R.N.G.PATEL INSTITUTE OF TECHNOLOGY-RNGPIT (An Autonomous College U/s UGC Act 1956)

B.TECH SEMESTER-I, SEMESTER END EXAMINATION – SUMMER 2025

Subject Code: 1SH102	Date: 02-06-2025
Subject Name: MATHEMATICS-I	
Time: 11:00 AM to 02:00 PM	Total Marks: 70

Instructions

- 1. It is compulsory for students to write Enrolment No. /Seat No. on the question paper.
- 2. Write answers of Section A and Section B in separate answer books.
- 3. Attempt all questions from both Section A and Section B.
- 4. Each section carries **35 marks**, with a total of **70 marks** for the examination.
- 5. The figures to the right of each question indicate full marks, make suitable assumptions with justification.
- 6. BL Bloom's Taxonomy Levels (R-Remember, U-Understanding, A –Application, N –Analyze, E Evaluate, C -Create), CO Course Outcomes.

SECTION A

Marks BL CO **Q.1 Multiple-Choice Questions** [05] (a) If $u = \log(x^2 + y^2)$ then $\frac{\partial u}{\partial x} =$ _____ 1 A 2 (i) $\frac{2y}{x^2 + y^2}$ (ii) $\frac{2}{x^2 + y^2}$ (iii) $\frac{2x}{x^2 + y^2}$ $(\mathbf{iv}) \frac{xy}{x^2 + y^2}$ (b) To find extreme values of f(x, y), we solve: 1 U 2 $(i) f_x = f_y = 0$ $(ii)f_x = f_y = 1$ $(iii) f_{xx} = f_{yy} = 0$ $(\mathbf{iv})f_{xy} = 0$ (c) The change of order of integration is useful when: 1 R 4 (i) The integrand is discontinuous (ii) The inner integral is hard to evaluate (iii)The function is not continuous (iv)The limits are constants (d) A vector field \overline{F} is said to be a sink if_____ 5 1 R (i) $div \bar{F} = 0$ (ii) $div \bar{F} > 0$

(e) The directional derivative of f(x, y, z) in the direction of unit vector is given 1 R 5 by:

$(\mathbf{i}) abla f\cdot \hat{u}$	$(\mathbf{ii})\nabla f imes \hat{u}$
(iii) $ abla \cdot \hat{u}$	$(\mathbf{iv}) abla\cdot f$

Q.2 **Attempt Any Two**

[10]

[10]

- 5 A 2 (a) If $u = \log(x^2 + y^2 + z^2)$, prove that $x \frac{\partial^2 u}{\partial y \partial z} = y \frac{\partial^2 u}{\partial z \partial x} = z \frac{\partial^2 u}{\partial x \partial y}$.
- 5 A 2 (b) Find the equations of the tangent plane and normal line at the point (-2, 1, -3)

to the ellipsoid
$$\frac{x^2}{4} + y^2 + \frac{z^2}{9} = 3$$
.

(c) Find the extreme value of
$$x^3 + 3xy^2 - 3x^2 - 3y^2 + 4$$
 5 A 2

Q.3 **Attempt Any Two**

(a) Evaluate $\iint (x^2 - y^2) dy dx$ over the triangle with the vertices (0, 1), (1, 1) and 5 Α 4 (1,2).

5 Α 4 **(b)** Change the order of integration and evaluate $\int_{0}^{\pi} \int_{0}^{\pi} \frac{\sin y}{y} dy dx$

(c) Evaluate $\iint e^{y^2} dx dy$ over the region bounded by the triangle with vertices 5 4 Α (0,0),(2,1),(0,1)

Attempt Any Two **Q.4**

- [10]
- (a) Show that $\overline{F} = (y+z)\hat{i} + (z+x)\hat{j} + (x+y)\hat{k}$, is irrotational and hence find its 5 5 A scalar potential function.
- (**b**) Find the work done, when a force $\overline{F} = (x^2 y^2 + x)\hat{i} (2xy + y)\hat{j}$ moves a 5 5 A particle from (0,0) to the point (1,1) along $y^2 = x$.
- (c) Prove that $\int_{C} \overline{F} \cdot d\overline{r} = 3\pi$, where $\overline{F} = z\hat{i} + x\hat{j} + y\hat{k}$ and C is the arc of the curve 5 5 A $\overline{r} = \cos t \hat{i} + \sin t \hat{j} + t \hat{k}$ from t = 0 to $t = 2\pi$.

SECTION B

			Marks	BL	CO
Q.1	Multiple-Choice Questions		[05]		
	(a) For the matrix $A = \begin{bmatrix} 6 & 2 \\ 2 & 6 \end{bmatrix}$ the Eigen	values are	1	U	1
	(i) 4, -8	(ii) 4, 8			
	(iii) -4, 8	(iv) -4, -8			
	(b) The inverse of the matrix $\begin{bmatrix} 2 & 0 \\ 2 & 3 \end{bmatrix}$ is	·	1	U	1
	(i) $\begin{bmatrix} 3 & 0 \\ -2 & 2 \end{bmatrix}$	(ii) $\frac{1}{6} \begin{bmatrix} -3 & 0 \\ 2 & -2 \end{bmatrix}$			
	(iii) $\frac{1}{6} \begin{bmatrix} 3 & 0 \\ -2 & 2 \end{bmatrix}$	(iv) none of these			
	(c) The order and degree of $\frac{d^3 y}{dx^3} = \left[\left(\frac{dy}{dx} \right)^2 \right]$	+1] ³ / ₂ is	1	Α	3
	(i) 3, 2	(ii) 3, 1			
	(iii) 1, 2	(iv) 2, 3			
	(d) The integrating factor of $\frac{dy}{dx} + y = e^{-x}$	is	1	Α	3
	(i) e^{x}	(ii) e^{-x}			
	(iii) $\log x$	(iv) <i>x</i>			
	(e) The solution of $(D^2 - 5D + 6)y = 0$ is	·	1	Α	3
	(i) $y = c_1 e^{2x} + c_2 e^{-3x}$	(ii) $y = c_1 e^{-2x} + c_2 e^{-3x}$			
	(iii) $y = c_1 e^{2x} + c_2 e^{3x}$	$(iv) y = c_1 e^{-2x} + c_2 e^{3x}$			
Q.2	Attempt Any Two		[10]		
	(a) Find rank of the matrix $\begin{bmatrix} 0 & 6 & 7 \\ -5 & 4 & 2 \\ 1 & -2 & 0 \end{bmatrix}$.		5	Α	1

(b) Solve the system of equations by Gauss Jordan method	5	А	1
x + y + z = 6			
x + 2y + 3z = 14 .			
2x + 4y + 7z = 30			
(c) Find Eigen value and Eigen vector $\begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$.	5	Α	1
Q.3 Attempt Any Two	[10]		
(a) Solve $(x^3 + 3xy^2) dx + (3x^2y + y^3) dy = 0$.	5	Α	3
(b) Solve $\frac{dy}{dx} + \frac{3y}{x} = \frac{\sin x}{x^3}$.	5	Α	3
(c) Solve $\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}$.	5	Α	3
Q.4 Attempt Any Two	[10]		
(d) Solve $(D^2 - 4D + 4)y = e^{2x} + \cos 2x$.	5	Α	3
(e) Using method of variation of parameter solve $\frac{d^2y}{dx^2} + 9y = \sec 3x$.	5	Α	3
(f) Using method of undetermined coefficients, solve the following equations $(D^2 + 4)y = 8x^2$.	5	Α	3
