R.N.G.PATEL INSTITUTE OF TECHNOLOGY-RNGPIT (An Autonomous College U/s UGC Act 1956)

B.TECH SEMESTER-I, SEMESTER END EXAMINATION – SUMMER 2025

Subject Code: 1SH101 Subject Name: ENGINEERING MATHEMATICS Time: 11:00 AM to 02:00 PM

Instructions

- 1. It is compulsory for students to write Enrolment No. /Seat No. on the question paper.
- 2. Write answers of Section A and Section B in separate answer books.
- 3. Attempt all questions from both Section A and Section B.
- 4. Each section carries **35 marks**, with a total of **70 marks** for the examination.
- 5. The figures to the right of each question indicate full marks, make suitable assumptions with justification.
- 6. BL Bloom's Taxonomy Levels (R-Remember, U-Understanding, A –Application, N –Analyze, E Evaluate, C -Create), CO Course Outcomes.

SECTION A

			Marks	BL	CO
Q.1	Multiple-Choice Questions		[05]		
	(a) The gradient of $\phi(x, y, z) =$	<i>xyz</i> at (1, 2, -1) is	1	Α	2
	(i) (-2,-1,2)	(ii) (6,2,1)			
	(iii) (2,-2,-1	(iv) (-2,2,-1)			
	(b) If $f(x, y) = c$ be an implicit	it function, then $\frac{dy}{dx} = $	1	R	2
	(i) $\frac{p}{q}$	(ii) $\frac{-q}{p}$			
	(iii) $-\frac{f_x}{f_y}$	$(\mathbf{iv}) - \frac{f_y}{f_x}$			
	(c) If $L\{f(t)\} = \frac{s}{(s-3)^2}$, th	en $L\{e^{-3t}f(t)\}$ is	1	Α	4
	(i) $\frac{s-3}{s^2}$	$(\mathbf{ii})\frac{s+3}{s}$			
	(iii) $\frac{s+3}{s^2}$	$(\mathbf{iv})\frac{s-3}{s}$			
	(d) $L^{-1}\left\{\frac{1}{(s+a)^2}\right\} =$		1	A	4
	(i) e^{-at}	(ii) te^{-at}			

Date: 02-06-2025

Total Marks: 70

(iii)
$$t^2 e^{-at}$$
 (iv) $t e^{at}$

(e) Which of the following is an even function?

(i) $\cos x$	(ii) e^x
(iii) sin <i>x</i>	(iv) $\pi^2 - x^3$

Q.2 Attempt Any Two

(a) Find the equations of the tangent plane and normal line to the surface $2x^2 + y^2 + 2z = 3 \operatorname{at}(2, 1, -3)$.		Α	2
(b) If $u = f(x - y, y - z, z - x)$, then show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.	5	A	2
(c) Find the extreme value of $x^3 + 3xy^2 - 3x^2 - 3y^2 + 4$.		Α	2
Attempt Any Two			
(a) Find the inverse Laplace transform of $\frac{s}{(s+1)(s-1)^2}$.	5	Α	4
(b) Find Laplace transform of $t(\sin t - t\cos t)$.		Α	4
(c) Solve the initial value problem Solve $y''+y=t$, $y(0)=1$, $y'(0)=0$ using Laplace transform.		Α	4
Attempt Any Two			

Q.4 Attempt Any Two

Q.3

- (a) Find the half-range cosine series of $f(x) = x(\pi x)$ in the interval $(0, \pi)$. 5 5 Α (**b**) Find the Fourier series of $f(x) = x^2$ in the interval $(-\pi, \pi)$. 5 5 А
- (c) Find the Fourier cosine integral of $f(x) = e^{-kx}$, where x > 0, k > 0. 5 5 А

5

R

1

[10]

SECTION B

			Marks	BL	CO
Q.1	Multiple-Choice Questions		[05]		
	(a) The Eigen value of $A\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	U	1
	(i) 0, 0, 0	(ii)1,1,1			
	(iii)1,2,3	(iv)−1,−2,−3			
	(b) The rank of the matrix is	$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 4 & 5 \end{bmatrix}$ is	1	U	1
	(i) 1	(ii) 2			
	(iii)3	(iv) 0			
	(c) The order and degree of $\frac{d}{d}$	$\frac{d^2 y}{dx^2} = \left[\left(\frac{dy}{dx} \right)^2 + 1 \right]^{\frac{3}{2}}$ is	1	A	3
	(i) 2,2	(ii) 2,1			
	(iii) 1,2	(iv) 2, 3			
	(d) The equation $M(x, y)dx +$	-N(x, y)dy = 0 is exact if	1	А	3
	(i) $\frac{\partial M}{\partial x} = \frac{\partial N}{\partial y}$	(ii) $\frac{\partial M}{\partial x} = -\frac{\partial N}{\partial y}$			
	(iii) $\frac{\partial M}{\partial y} = -\frac{\partial N}{\partial x}$	(iv) $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$			
	(e) The Wronskian of $y_1 = \cos \theta$	$s_2 x, y_2 = \sin 2x$ is	1	Α	3
	(i) -2	(ii) 1			
	(iii) 2	(iv) 0			
Q.2	Attempt Any Two		[10]		
	(a) Find inverse by using Gau $\begin{bmatrix} 0 & 1 & 2 \end{bmatrix}$	ss Jordan method for the matrix	5	Α	1

 $\begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$

	(b)) Investigate for what values of λ and μ the equations		A	1
		x + 2y + z = 8			
		2x + 2y + 2z = 13			
		$3x + 4y + \lambda z = \mu$			
		have (i) no solution (ii) a unique solution, and (iii) many solutions. (c) Find Eigen value and Eigen vector for the matrix			
	(c)			Α	1
		$\begin{vmatrix} -6 & 7 & -4 \end{vmatrix}$.			
Q.3	Att	empt Any Two	[10]		
	(a)	Form the differential equation by eliminating arbitrary constants from	5	Α	3
		$y = Ae^{-3x} + Be^{2x}.$			
	(b)	Solve $\frac{dy}{dx} + y \sin x = e^{\cos x}$.	5	Α	3
	(c)	Solve $\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}$.	5	Α	3
Q.4	Att	empt Any Two	[10]		
	(a)	Solve $y''' - 3y'' + 3y' - y = 4e^x$.	5	Α	3
	(b)	Using method of variation of parameter solve $\frac{d^2y}{dx^2} + y = \cos ecx$.	5	Α	3
	(c)	Using method of undetermined coefficients, solve the equations $y''+2y'+4y=2x^2+3e^{-x}$.	5	A	3
