R.N.G.PATEL INSTITUTE OF TECHNOLOGY-RNGPIT (An Autonomous College U/s UGC Act 1956)

B. Tech. SEMESTER-II, SEMESTER END EXAMINATION – SUMMER 2025

Subject Code: 1SH204	Date: 17-05-2025
Subject Name: APPLIED MATHEMATICS	
Time: 11:00 AM to 02:00 PM	Total Marks: 70

Instructions

- 1. It is compulsory for students to write Enrolment No. /Seat No. on the question paper.
- 2. Write answers of Section A and Section B in separate answer books.
- 3. Attempt all questions from both Section A and Section B.
- 4. Each section carries **35 marks**, with a total of **70 marks** for the examination.
- 5. The figures to the right of each question indicate full marks, make suitable assumptions with justification.
- 6. BL Bloom's Taxonomy Levels (R-Remember, U-Understanding, A -Application, N -Analyze, E -Evaluate, C -Create), CO - Course Outcomes.

SECTION A

			Marks	BL	CO
Q.1	Multiple-Choice Questions		[05]		
	(a) In a symmetric distribution, mean, m	nedian and mode are connected by	1	R	5
	(i) Mode = 2 Median $- 3$ Mean	(ii) Mean = 3 Median $- 2$ Mode			
	(iii) Mode = 3 Median – 2 Mean	(iv) Median = $3 \text{ Mode} - 2 \text{ Mean}$			
	 (b) Find the value of x, if the mode of the 15, 20, 25, 18, 14, 15, 25, 15, 18, (i) 15 	-	1	U	5
	(iii) 25	(iv) 20			
	(c) If $f(x)$ is a probability density function then $\int_{-\infty}^{\infty} f(x) dx =$	nction of a continuous random variable,	1	U	4
	-∞	(**) 1			
	(i) 0	(ii) 1			
	(iii) undefined	(iv) infinite			
	(d) A bag contains 2 red, 3 green and 2 l random. What is the probability that (i) 10/21		1	Α	4

(iii) 2/7 (iv) 5/7

(e) A and B are two events such that $P(\overline{A}) = 0.4$ and $P(A \cap B) = 0.2$ Then $P(A \cap \overline{B})$ is equal to _____

(i) 0.4	(ii) 0.2

(iii) 0.6 (iv) 0.8

Q.2 Attempt Any Two

(a) If A and B are two events such that $P(A) = \frac{3}{8}$, $P(B) = \frac{5}{8}$ and $P(A \cup B) = \frac{3}{4}$, 5

find P(A | B) and P(B | A). Check whether A and B are independent.

- (b) In a bolt factory, machines A, B and C manufacture 25%, 35% 40% of the 5 A 4 total output and out of the total manufacturing, 5%, 4% and 2% bolts are defective. A bolt is drawn at random form the product and it is found to be defective. Find the probability that it is manufactured by machine A.
- (c) A discrete random variable has the probability mass function given below: 5 A 4

X -2 -1 0 1	Z	3
P(X = x) = 0.2 k 0.1 2k	0.1	2k

Find k, mean and variance.

Q.3 Attempt Any Two

(a) Considering x as a dependent variable, fit a straight line to the following 5 A data.

x	1	3	4	6	8	9	11	14
У	1	2	4	4	5	7	8	9

(**b**) Fit a second-degree parabola $y = a + bx^2$ to the following data: 5

x	1	2	3	4	5
У	1.8	5.1	8.9	14.1	19.8

(c) Fit a curve of the form $y = ax^b$ to the following data:

x	20	16	10	11	14
у	22	41	120	89	56

Q.4 Attempt Any Two

(a) Calculate the first four moments from the following data:

x	0	1	2	3	4	5	6	7	
f	5	10	15	20	25	20	15	10	

Also, calculate the values of β_1 and β_2 .

(b) Calculate the standard deviation of the following data:

x	10	11	12	13	14	15	16	17	18
f	2	7	10	12	15	11	10	6	3

Α

A

4

4

3

3

3

5

5

A

A

Α

A

[10]

[10]

5

[10]

5

5

8

1

Page 3 of 4

(c) The runs scored by two batsmen A and B in 9 consecutive innings are given 5 below.

А	85	20	62	28	74	5	69	4	13
В	72	4	15	30	59	15	49	27	26

SECTION B

													Marks	BL	CO
Q.5	Multi	ple-Ch	oice Q	uestior	IS								[05]		
	(a) In	terpola	tion is	a meth	od of			•					1	R	2
		(i) Int	errelat	ing			((ii) Est	timatin	g					
		(iii) In	tegrati	ng			((iv) co	mbiniı	ng					
	(b) Which relation between the operators i						is corr	ect?				1	R	2	
	(i) $\Delta = E - 1$						((ii) $\Delta = E + 1$							
		(iii) V	V = E -	1			((iv) V	=E+1	1					
	(c) W	hich m	nethod	can be	used f	or bo	oth eq	qual ar	nd uneo	qual int	ervals?		1	R	2
		(i) La	grange	's meth	od		((ii) Divided difference method							
		(iii) N	ewton'	s meth	bc		((iv) Bo	oth (i) a	and (ii)					
	(d) T	he com	plete s	olution	of <i>z</i> =	= <i>px</i> +	+ <i>q</i> y+	$+\log($	pq) is				1	Α	1
		(i) z =	=ax+b	у			((ii) z =	=ax+b	by + ab					
		(iii) z	=ax+	$by + \log \theta$	g(ab)		((iv) No	one of	these					
	(e) W	hat is t	the nati	ure of L	agran	ge's l	linea	ar parti	al diffe	erential	equation	?	1	R	1
		(i) Fir	st orde	r, Thirc	l degr	ee	((ii) See	cond o	rder, Fi	rst degree	e			
		(iii) Fi	rst ord	er, Seco	ond de	egree	((iv) Fi	rst ord	er, Firs	t degree				
Q.6	Attem	pt Ang	y Two										[10]		
	(a) Us	sing Ne	wton's	forwa	d inte	rpola	ation	formu	la, fino	l the va	lue of f	(1.6)	5	Α	2
	fro		1	ng data		1									
	x	1	1.4	1.8	2.2										
	f(x)	3.49	4.82	5.96	6.5										

(b) Consider the following tabular values

x	50	100	150	200	250
У	618	724	805	906	1032

Determine y(300) using Newton's backward interpolation formula.

(c) Using Newton's divided difference formula, compute f(10.5) from the 5 A 2 following data:

x	10	11	13	17
f(x)	2.3026	2.3979	2.5649	2.8332

Q.7 Attempt Any Two

[10]

5

5

2

2

1

Α

Α

(a) Evaluate f(9) by using Lagrange's interpolation method from the following 5 A data:

x	5	7	11	13	17
f(x)	150	392	1452	2366	5202

(b) Form a partial differential equation of $z = f\left(\frac{x}{y}\right)$.	5	Α	1
(y)			

(c) Form the partial differential equation by eliminating the arbitrary function 5 A 1 from $xyz = \phi(x+y+z)$.

Q.8	Attempt Any Two	[10]	
-----	-----------------	------	--

- (a) Solve: (y+z)p+(z+x)q=x+y 5 A 1
- **(b)** Solve: (i) $\sqrt{p} + \sqrt{q} = 1$ (ii) $p x^2 = q + y^2$ **5 A 1**
- (c) Solve: (i) $z = px + qy + p^2 q^2$ (ii) $z = px + qy 2\sqrt{pq}$
