Marke RI

CO

R.N.G.PATEL INSTITUTE OF TECHNOLOGY-RNGPIT (An Autonomous College U/s UGC Act 1956)

B.Tech. SEMESTER-II, SEMESTER END EXAMINATION – SUMMER 2025

Subject Code: 1SH203	Date: 17-05-2025
Subject Name: MATHEMATICS -2	
Time: 11:00 AM to 02:00 PM	Total Marks: 70

Instructions

- 1. It is compulsory for students to write Enrolment No. /Seat No. on the question paper.
- 2. Write answers of Section A and Section B in separate answer books.
- 3. Attempt all questions from both Section A and Section B.
- 4. Each section carries **35 marks**, with a total of **70 marks** for the examination.
- 5. The figures to the right of each question indicate full marks, make suitable assumptions with justification.
- 6. BL Bloom's Taxonomy Levels (R-Remember, U-Understanding, A –Application, N –Analyze, E Evaluate, C -Create), CO Course Outcomes.

SECTION A

			IVICI INS	DL	CU
Q.1	Multiple-Choice Questions		[05]		
	(a) Which of the function is odd function	n	1	R	2
	(i) sinx	(ii) cosx			
	(iii) e^x	(iv) xsinx			
	(b) $f(x) = x \cos x \operatorname{in} (-\pi, \pi) \operatorname{then} b_1 \operatorname{is} -$	·	1	U	2
	(i) 0	(ii) <i>π</i>			
	(iii) 1	(iv) None of these			
	(c) If $f(x)$ is odd function in $(-l, l)$ then	n value of a_n	1	R	2
	(i) 0	(ii) $\frac{\pi}{2}$			
	(iii) 1	(iv) $l^2 - 1$			
	(d) The series $\sum \frac{1}{n^p}$ is divergent if		1	U	1
	(i) $p > 1$	(ii) <i>p</i> < 1			
	(iii) $p \le 1$	(iv) $p \ge 1$			

(e) The infinite series $1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots$.

(iii) Oscillatory (iv) None of these

Q.2	Attempt Any Two	[10]		
	(a) Find the Absolute or conditional convergence of series $\sum_{n=1}^{\infty} \frac{(-1)^n n^2}{n^3 + 1}$.	5	A	1
	(b) Test the convergence of the following series $\frac{x}{1.2} + \frac{x^2}{3.4} + \frac{x^3}{5.6} + \dots$	5	A	1
	(c) Test the convergence of the series $\frac{1\cdot 2}{3^2 \cdot 4^2} + \frac{3\cdot 4}{5^2 \cdot 6^2} + \frac{5\cdot 6}{7^2 \cdot 8^2} + \cdots$	5	A	1
Q.3	Attempt Any Two	[10]		
	(a) Find Fourier series of $f(x) = \frac{1}{2}(\pi - x)$ on interval $(0, 2\pi)$.	5	Α	2
	(b) Find Fourier series of $f(x) = 4 - x^2$ on interval (0,2), Hence deduce that	5	Α	2
	$\frac{\pi^2}{3} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots$			
	(c) Find sine series of $f(x) = 2x$ on interval $0 < x < 1$	5	Α	2
Q.4	Attempt Any Two	[10]		
	(a) Express $f(x) = e^{-kx}$ (k > 0) as Fourier cosine integral.	5	Α	3
	(b) Find Fourier integral representation of the function $\begin{cases} f(x) = 1, & x < 1 \\ 0, & x > 1 \end{cases}$.	5	A	3
	(c) Test the convergence of the series $\sum \frac{(-1)^n (n+1)^n}{(2^n)^n}$.	5	A	1

1

R

1

SECTION B

			Marks	BL	CO
Q.5	Multiple-Choice Questions		[05]		
	(a) If $L\left\{\frac{\sin t}{t}\right\} = \tan^{-1}\left(\frac{1}{s}\right)$, then $L\left\{\frac{\sin t}{s}\right\}$	$\left\{\frac{\ln at}{t}\right\}$ is	1	A	4
	(i) $\tan^{-1}(s)$	(ii) $\tan^{-1}\left(\frac{s}{a}\right)$			
	(iii) $\tan^{-1}\left(\frac{a}{s}\right)$	(iv) $\tan^{-1}\left(\frac{1}{s}\right)$			
	(b) $L^{-1}\left\{\frac{1}{(s+a)^2}\right\} = $		1	Α	4
	(i) e^{-at}	(ii) te^{-at}			
	(iii) $t^2 e^{-at}$	$(\mathbf{iv}) t e^{at}$			
	(c) $L\{e^{3t+3}\} =$		1	A	4
	(i) $\frac{e^3}{s+3}$	(ii) $\frac{e^3}{s-3}$			
	(iii) $\frac{e^3}{s}$	(iv) $\frac{e^3}{s^2 - 3}$			
	(d) The partial differential equation form from the equation $z = ax^2 + by^2$ is	ned by eliminating arbitrary constants	1	Α	5
	(i) $2z = xp + yq$	$(\mathbf{ii}) z = xq + yp$			
	$(\mathbf{iii}) z = xp + yq$	(iv) none of these			
	(e) The solution of the equation $z = px$ -	+qy-pq is	1	A	5
	(i) $z = ax + by + ab$	$(\mathbf{ii}) z = ax + by - ab$			
	$(\mathbf{iii}) z = ax - by - pq$	(iv)none of these			
Q.6	Attempt Any Two		[10]		
	(a) Find the Laplace transform of		5	A	4
	(i) $\sin^2 3t$ (ii) $e^{-3t}(2\cos 5t - 3\sin 5t)$				
	(b) Find Laplace transform of $te^{4t} \cos 2t$		5	A	4
	(c) Find the inverse Laplace transform o	$f\frac{s+7}{s^2+8s+25}.$	5	Α	4

Q.7 Attempt any Two

- (a) Solve the initial value problem $y''+4y'+3y=e^{-t}$, y(0)=y'(0)=1 using 5 A Laplace transform.
- (b) Using convolution theorem find inverse Laplace transform $\frac{1}{(s+2)(s-1)}$ 5
- (c) Derive a partial differential equation by eliminating the arbitrary constants 5 A 5 a and b from $z = (x-2)^2 + (y-3)^2$

Q.8 Attempt any Two

[10]

[10]

4

4

Α

- (a) Eliminate the arbitrary function from the equation $z = xy + f(x^2 + y^2)$ 5 A 5
- **(b)** Solve $x^2 p + y^2 q = z^2$ **5 A 5**
- (c) Solve (i) $\sqrt{p} + \sqrt{q} = 1$ (ii) $p x^2 = q + y^2$ 5 A 5
