R.N.G.PATEL INSTITUTE OF TECHNOLOGY-RNGPIT (An Autonomous College U/s UGC Act 1956)

B. Tech. SEMESTER-II, SEMESTER END EXAMINATION – SUMMER-2025 Subject Code: 1SH202 Date: 17-05-2025

Time: 11:00 AM to 02:00 PM

Instructions

- 1. It is **compulsory** for students to write **Enrolment No. /Seat No.** on the question paper.
- 2. Write answers of Section A and Section B in separate answer books.
- 3. Attempt all questions from both Section A and Section B.
- 4. Each section carries **35 marks**, with a total of **70 marks** for the examination.
- 5. The figures to the right of each question indicate full marks, make suitable assumptions with justification.
- 6. BL Bloom's Taxonomy Levels (R-Remember, U-Understanding, A Application, N Analyze, E Evaluate, C -Create), CO - Course Outcomes.

SECTION A

			Marks	BL	CO
Q.1	Multiple-Choice Questions		[05]		
	(a) $\sinh z = _$		1		
	(i) $\frac{e^z - e^{-z}}{2}$	(ii) $\frac{e^z - e^{-z}}{2i}$			
	(iii) $\frac{e^z + e^{-z}}{2}$	$(\mathbf{iv}) \ \frac{e^{iz} + e^{-iz}}{2i}$			
	(b) $\sqrt{-5+12i} = $		1		
	(i) $\pm (3+2i)$	(ii) $\pm (2-3i)$			
	(iii) $\pm (2+3i)$	$(iv) \pm (3-2i)$			
	(c) If $z = \frac{-2}{1 + \sqrt{3}i}$, $Arg(z) =$		1		
	(i) $\frac{\pi}{3}$	(ii) $\frac{2\pi}{3}$			
	(iii) $-\frac{\pi}{3}$	$(iv) -\frac{\pi}{6}$			
	(d) In bracketing methods, the root of an	1			
	(i) Two initial guesses without an condition	y (ii) Two points where the function has the same sign			
	(iii) Two points where the function	n (iv) The midpoints of two initial			
	has opposite signs	guesses			

Subject Name: NUMERICAL METHODS AND COMPLEX VARIABLES **Total Marks:70**

	(e) Compared to the bisection method, the false position method generally						1			
	(i) converges slower(iii) is less stable			(ii)	(ii) converges faster					
				(iv	(iv) requires the second order derivative					
Q.2	Attempt A	ny Two								[10]
	(a) Find a decimal	negative places b	root of y using l	the equ	ation x^2 method	x^{-4x-1}	0=0,	correct 1	up to three	5
(b) Find a root between 0 and 1 of the equation $e^x \sin x = 1$, correct up to decimal places by using Newton-Raphson method						p to four	5			
	(c) By usin places,	g secant i between	method, 0 and 1.	solve <i>xe</i>	$e^{x} - 1 = 0$, correct	up to th	nree dec	imal	5
Q.3	Attempt A	ny Two								[10]
-	(a) Conside data.	pring x a $\frac{1}{1}$	s a deper	ndent va 4 4	riable, fi 6 4	t a straig 8 5	tht line t 9 7	to the fo 11 8	llowing	5
	(b) Fit a sec	cond-deg	ree paral	oola y=	$a+bx^2$ to	o the foll	lowing	data:		5
	x y	1 1.8	2 5.1	3 8.9	4 14.1	5 19.8				
	(c) Fit a cur	rve of the	e form y	$=ax^b$ to	the follo	wing da	ta:			5
	$\frac{x}{y}$	20 22	16 41	10 120	11 89	14 56				
Q.4	Attempt A	ny Two	1	•						[10]
	(a) State De Moivre's theorem. Evaluate $\frac{\left(\cos 2\theta + i\sin 2\theta\right)^{\frac{2}{3}}\left(\cos \theta - i\sin \theta\right)^{2}}{\left(\cos 3\theta - i\sin 3\theta\right)^{2}\left(\cos 5\theta - i\sin 5\theta\right)^{\frac{1}{3}}}.$						5			
	(b) Find the	product o	f all valu	es of $\left(\frac{1}{2}\right)$	$+i\frac{\sqrt{3}}{4}$	•				5

(**b**) Find the product of all values of $\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^2$.

(c) Show that f(z) = z |z| is not analytic anywhere.

5

SECTION B

		Marks	BL	CO
Q.5	Multiple-Choice Questions	[05]		
	(a) Interpolation is a method of	1	1	2
	(i) Interrelating (ii) Estimating			
	(iii) Integrating (iv) combining			
	(b) Newton's Forward interpolation formula can be used	1	1	2
	(i) only for equally spaced (ii) only for unequally spaced intervals			
	(iii) for both equally and unequally (iv) for unequally intervals			
	(c) Which method can be used for both equal and unequal intervals?	1	1	2
	(i) Lagrange's method (ii) Divided difference method			
	(iii) Newton's method (iv) both (i) and (ii)			
	 (d) What method is commonly used to approximate solutions to ordinary differential equations by expanding the solution as a Taylor series? (i) Euler's Method (ii) Modified Euler's Method 	1	1	4
	(iii) Taylor's Series Method (iv) Runge-Kutta Method			
	(e) Which method utilizes a weighted average of slopes at different points within a step to achieve higher accuracy in numerical solutions of ordinary differential equations?	1	1	4
	(i) Euler's Method (ii) Modified Euler's Method			
	(iii) Taylor's Series Method (iv) Runge-Kutta Method			
Q.6	Attempt Any Two	[10]		
	(a) Construct Newton's forward interpolation polynomial for the following data	5	3	2
	and hence find $y(5)$.			
	X 4 6 8 10 Y 1 3 8 16			
	(b) The population of a town is given below. Estimate the population for the	5	3	2
	year 1930 using suitable interpolation.			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	Population46668193101 y y y y y y y			
	(in thousand)			

	(c) By using Lagrange's formula, find y when $x=10$.			2
	x 5 6 9 11			
	y 12 13 14 16			
Q.7	Attempt Any Two	[10]		
	(a) Compute $f(-1)$ and $f(6)$ from the following values using Newton's divided	5	3	2
	difference formula:			
	x 1 2 4 7			
	f(x) 10 15 67 430			
	(b) Evaluate $\int_0^1 e^x dx$ with $n=10$ using trapezoidal rule	5	3	4
	(c) Evaluate $\int_{0}^{3} \frac{1}{1+x} dx$ taking $h = 0.5$ using Simpson's 3/8 rule	5	3	4
Q.8	Attempt Any Two	[10]		
	(a) Using the Taylor's series method, find correct to four decimal places, the	5	3	4
	value of y(0.1), given $\frac{dy}{dx} = y^2 + x$ and y(0)=1			
	(b) Using Euler's method find the approximate value of y at $x=1.5$ taking $h=0.1$,	5	3	4
	given $\frac{dy}{dx} = \frac{y - x}{\sqrt{xy}}$, $y(1) = 2$			
	(c) Obtain values of y at $x=0.1$ using Runge-Kutta method of second order for	5	3	4
	the differential equation $\frac{dy}{dx} = x - y^2$, $y(0) = 1$			
