R.N.G.PATEL INSTITUTE OF TECHNOLOGY-RNGPIT

(An Autonomous College U/s UGC Act 1956)

B. Tech. SEMESTER-II, SEMESTER END EXAMINATION – SUMMER 2025

Subject Code: 1SH201 Date: 17-05-2025

Subject Name: NUMERICAL METHODS IN CHEMCIAL ENGINEERING

Time: 11:00 PM to 02:00 PM Total Marks: 70

Instructions

- 1. It is **compulsory** for students to write **Enrolment No. /Seat No.** on the question paper.
- 2. Write answers of Section A and Section B in separate answer books.
- 3. Attempt all questions from both **Section A** and **Section B**.

(iii) $p(x) = \frac{e^{-\lambda} \lambda^x}{x!}$

- 4. Each section carries **35 marks**, with a total of **70 marks** for the examination.
- 5. The figures to the right of each question indicate full marks, make suitable assumptions with justification.
- 6. BL Bloom's Taxonomy Levels (R-Remember, U-Understanding, A –Application, N –Analyze, E Evaluate, C -Create), CO Course Outcomes.

SECTION A

Marks BL CO **Multiple-Choice Questions** [05] 0.1 (a) Which relation between the operators is correct? 1 R 1 (i) $(1/E)-1=\nabla$ (ii) $1+E=\Delta$ (iii) $E-1=\Delta$ (iv) $1+(1/E)=\nabla$ **(b)** Which method can be used for both equal and unequal intervals? 1 R 1 (i) Lagrange's Method (ii) Divided difference method (iii) Both (i) & (ii) (iv) None of there (c) Regression line of x on y is 1 R 5 (i) $x - \overline{x} = b_{yy} (y - \overline{y})$ (ii) $x - \overline{x} = b_{yy} (y + \overline{y})$ (iii) $x - \overline{x} = b_{xy} (y - \overline{y})$ (iv) $y - \overline{y} = b_{yx}(x - \overline{x})$ (d) A random variable X is said to follow Poisson distribution if the probability 5 1 R of x is given by_ (i) $p(x) = \frac{e^{-\lambda}x^{\lambda}}{x^{\lambda}}$ (ii) $p(x) = \frac{e^{-x}\lambda^x}{x!}$

(iv) $p(x) = \frac{e^{-\lambda} \lambda^x}{\lambda 1}$

(e) In terms of coefficient of regression, coefficient of correlation is

R 5

- $(i) \quad r = \sqrt{b_{yx} / b_{xy}}$
- $(ii) \quad r = \sqrt{b_{yx} + b_{xy}}$
- (iii) $r = \sqrt{b_{yx}b_{xy}}$
- $(iv) \quad r = \sqrt{b_{yx} b_{xy}}$

Q.2 Attempt Any Two

[10]

5

5

5

1

- (a) Find the negative root of $x^3 7x + 3$ by the bisection method up to three decimal places.
- A

1

- (b) Find the root between 0 and 1 of the equation $e^x \sin x = 1$, correct up to four decimal places using Newton-Raphson method.
- A 1
- (c) Solve $xe^x 1 = 0$, correct up to three decimal places between 0 and 1.
- A 1

Q.3 Attempt Any Two

[10]

5

(a) Fit a straight line to the following data. Also, estimate the value of y at x=70

A	
\boldsymbol{A}	

A

A

	х	71	68	73	69	67	65	66	67
	у	69	72	70	70	68	67	68	64

(b) Fit a second degree polynomial using least square method to the following data

5

3

3

х	0	1	2	3	4
у	1	1.8	1.3	2.5	6.3

(c) Fit a curve of the form $y=ab^x$ to the following data by the method of least squares

3

х	1	2	3	4	5	6	7
y	87	97	113	129	202	195	193

Q.4 Attempt Any Two

[10]

(a) A continuous random variable has probability density function

5 A

$$f(x) = \begin{cases} kxe^{-\lambda x} & x \ge 0, \lambda > 0 \\ 0 & otherwise \end{cases}$$

Determine (i)k, (ii)mean and (iii) variance

(b) Seven unbiased coins are tossed 128 times and the number of heads obtained is noted as given below

5

5

5

5

 No. of heads
 0
 1
 2
 3
 4
 5
 6
 7

 Frequency
 7
 6
 19
 35
 30
 23
 7
 1

Fit a binomial distribution to the data.

(c) If a Poisson distribution is such that $\frac{3}{2}P(X=1)=P(X=3)$, find

A 5

A

(i) $P(X \ge 1)$, (ii) $P(X \le 3)$ and (iii) $P(2 \le X \le 5)$.

SECTION B

		Marks	BL	CO
Q.5	Multiple-Choice Questions	[05]		
	(a) Interpolation provides a mean for estimating functions	1	1	2
	(i) At the beginning points (ii) At the ending points			
	(iii) At the intermediate points (iv) None of the mentioned			
	(b) $\nabla \log x =$	1	1	2
	(i) $\log \frac{x}{x-h}$ (ii) $\log \frac{x-h}{x}$			
	(iii) $\log \frac{x}{x+h}$ (iv) $\log(x-h)$			
	x+h (c) What is the order of the Euler's method for solving ODEs?	1	1	4
	(i) 0 (ii) 1			
	(iii) 2 (iv) 3			
	(d) What method is commonly used to approximate solutions to ordinary differential equations by expanding the solution as a Taylor series?	1	1	4
	(i) Euler's Method (ii) Modified Euler's Method			
	(iii) Taylor's Series Method (iv) Runge-Kutta Method			
	(e) Which method is also known as the "improved" Euler method for solving ordinary differential equations?	1	1	4
	(i) Euler's Method (ii) Modified Euler's Method			
	(iii) Taylor's Series Method (iv) Runge-Kutta Method			
Q.6	Attempt Any Two	[10]		
	(a) By using Newton's forward difference interpolation formula, find a	5	3	2
	polynomial of degree 2 which takes the following values:			
	x 0 1 2 3 4 5 6 7 y 1 2 4 7 11 16 22 29			
	(b) Consider the following tabular values:	5	3	2
	x 50 100 150 200 250 y 618 724 805 906 1032			
	(c) Evaluate $f(4)$ by using Lagrange's interpolation method from the	5	3	2
	following data:			
	x 2 3 5 7 x 2 3 5 7			
	f(x) = 0.1506 + 0.2001 + 0.4517 + 0.6250			

Q.7 Attempt Any Two

[10]

(a) Compute f(9) from the following values using Newton's divided difference formula:

5

3 2

	X	5	7	11	13	17
	f(x)	150	392	1452	2366	5202

(b) Evaluate $\int_0^1 e^{-x^2} dx$ with n=10 using trapezoidal rule

5

3 4

(c) Evaluate $\int_0^1 \frac{dx}{1+x^2} dx$ taking $h = \frac{1}{6}$ using Simpson's 3/8 rule

3

Q.8 Attempt Any Two

[10]

5

5

5

5

(a) Solve $\frac{dy}{dx} = 2y + 3e^x$ with initial conditions $x_0 = 0$, $y_0 = 1$ by Taylor's series method. Find approximate value of y for x = 0.1

3

4

4

4

(b) Using Euler's method, find y(0.2) given $\frac{dy}{dx} = y - \frac{2x}{y}$, y(0) = 1 with

3

- h=0.1.
- (c) Using fourth order Runge-Kutta method, find y at x=0.1 for differential equation $\frac{dy}{dx} = 3e^x + 2y$, y(0) = 0 by taking h=0.1

3
