Enrolment No/Seat No.: _

R.N.G.PATEL INSTITUTE OF TECHNOLOGY-RNGPIT (An Autonomous College U/s UGC Act 1956)

B. Tech. SEMESTER-II, SEMESTER END EXAMINATION –SUMMER 2025Subject Code: 1EL202Date: 23-05-2025Subject Name: DIGITAL LOGIC DESIGNTotal Marks: 70Time: 11:00 AM to 01:30 PMTotal Marks: 70

Instructions

- 1. It is compulsory for students to write Enrolment No. /Seat No.on the question paper.
- 2. Write answers of Section A and Section B in separate answer books.
- 3. Attempt all questions from both Section A and Section B.
- 4. Each section carries **35 marks**, with a total of **70 marks** for the examination.
- 5. The figures to the right of each question indicate full marks, make suitable assumptions with justification.
- 6. BL Bloom's Taxonomy Levels (R-Remember, U-Understanding, A –Application, N –Analyze, E Evaluate, C -Create), CO Course Outcomes.

SECTION A

			Marks	BL	СО
Q.1	Multiple-Choice Questions		[05]		
	(a) What is the output if both inputs of an EX-NOR gate are at the opposite logic level?		1	R	1
	(i) 1	(ii) 0			
	(iii) No output	(iv) Either 0 or 1			
	(b) If A=1 & B=1 is the input in half adder then output will be		1	R	2
	(i) Sum=1 Carry=1	(ii) Sum=1 Carry=0			
	(iii) Sum=0 Carry=1	(iv)Sum=0 Carry=0			
	(c) Number of select lines for 16 X 1 Multiplexer are		1	A	2
	(i) 2	(ii)4			
	(iii) 3	(iv) 5			
	(d) The fastest type of analog-to-digital converter is		1	R	4
	(i) Successive Approximation	(ii) Counter type			
	type				
	(iii) Flash type	(iv) None of above			

	(e) In a J-K flip-flop, if J=K=1 the resulting flip-flop is referred to as		1	U	3
	(i) D flip-flop	(ii) S-R flip-flop			
	(iii) T flip-flop	(iv) S-K flip-flop			
Q.2	Attempt Any Two		[10]		
	(a) Draw the logic symbol, write Boolean	a) Draw the logic symbol, write Boolean expression and construct the truth table		R	1
	for following logic gates.				
	(1) AND GATE (2) OR GATE (3) NAND GATE				
	(4) EX-OR GATE (5) NOR GATE.				
	(b) Converts from one number system to another number system.		5	A	1
	$(1) (112)_{10} = (?)_2 \qquad (2) (110010)_2$	$(11)_2 = (?)_8$			
	$(3) (1001011)_2 = (?)_{10} (4) (111100)$	$111011)_2 = (?)_{16}$			
	$(5) (32)_{10} = (?)_2$				
	(c) Explain following logic family: 1. TTL 2. CMOS		5	R	1
Q.3	Attempt Any Two		[10]		
	(a) State & Explain Simplify the following expression and draw circuit for the		5	R	2
	output $Y = \Sigma m (1,3,4,6,8,9,11,12,13,15) + d(0,5,7)$				
	(b) Design & Explain 4 bit Binary to Gray code converter.		5	A	2
	(c) Explain Full adder using two half adders.		5	A	2
Q.4	Attempt Any Two		[10]		
	(a) Differentiate between combinational logic circuit and sequential logic circuit.		5	R	3
	(b) Explain J-K Flip Flop with its circuit diagram, truth table and excitation table.		5	U	3
	(c) Design Mod-6 Asynchronous counter using T FFs.		5	Α	3

SECTION B

			Marks	BL	CO
Q.5	Multiple-Choice Questions		[05]		
	(a) Determine the resolution of a 6-bit DA	(a) Determine the resolution of a 6-bit DAC in terms of percentage:		A	4
	(i) 15.87%	(i) 15.87% (ii) 0.158%			
	(iii) 1.587%	(iv) 1.687%			
	(b) Which type of memory loses its stored data when the power supply is removed?		1	R	5
	(i) ROM	(ii) PROM			
	(iii) EEPROM	(iv) RAM			
	(c) An R-2R ladder DAC utilizes only two resistor values, R and 2R, which helps in achieving better:		1	U	4
	(i) Conversion speed	(ii) Power efficiency			
	(iii) Accuracy and ease of fabrication	(iv) Output current range			
	(d) Which of the following is a key character Arrays (FPGAs)?	I) Which of the following is a key characteristic of Field Programmable Gate Arrays (FPGAs)?		R	5
	(i) Fixed logic functionality after manufacturing.	(ii) One-time programmable logic.			
	(iii) Reconfigurable hardware architecture after manufacturing.	(iv) Limited to implementing only combinational logic.			
	(e) Expanding the memory size of a system by increasing the number of address lines allows for:		1	U	5
	(i) Storing more bits per memory location	(ii) Accessing data faster			
	(iii) Addressing a larger number of (iv) Reducing power consumption. memory locations				
Q.6	Attempt Any Two		[10]		
	(a) Define the following parameters of DACs: (i) Accuracy, (ii) Settling time,(iii) Resolution, (iv) Offset Voltage, (v) Monotonicity		5	R	4

	(b) The Logic levels used in a 4-bit R-2R ladder DAC are: Logic $1 = 5$ V and	5	A	4
	Logic $0 = 0$ V. Find the output voltage for inputs (i) 0101, (ii) 1011, and (iii)			
	1010.			
	(c) Explain Successive Approximation ADC with neat diagram	5	U	4
Q.7	Attempt Any Two	[10]		
	(a) Explain the Weighted Register type DAC. Discuss the advantages and	5	U	4
	disadvantages of this type of DAC. Also calculate output voltage for input			
	1101 for 4-bit Weighted Register type DAC if V_{ref} = 5 V, R_f = 500 Ω and R			
	$= 1 \text{ K}\Omega.$			
	(b) Explain the architecture and working principle of a Programmable Logic	5	U	5
	Array (PLA). How does it differ from a Programmable Array Logic (PAL)?			
	(c) Explain flash-type ADC with neat diagram. If 5-bit flash-type ADC has a	5	A	4
	reference voltage of 20 V. How many voltage comparators and resistors			
	does it have? What is the increment between the voltages applied to the			
	comparators?			
Q.8	Attempt Any Two	[10]		
	(a) Explain the basic architecture of a Field Programmable Gate Array (FPGA).	5	U	5
	Describe the function of Configurable Logic Blocks (CLBs) and the			
	programmable routing resources within an FPGA.			
	(b) Draw a logic diagram showing how to interconnect $2K \times 8$ memory circuits	5	A	5
	to obtain $4K \times 8$ memory? Each circuit has an active-LOW chip select input			
	and common data-in /data-out pins.			
	(c) Explain different types of ROMs.	5	U	5