Page 1 of 2

R.N.G.PATEL INSTITUTE OF TECHNOLOGY-RNGPIT (An Autonomous College U/s UGC Act 1956)

B. Voc. SEMESTER-I, SEMESTER END EXAMINATION - WINTER 2024

Subject Code: 1SRE103			Date: 17-12-2024		
Subject Name: FUNDAMENTAL OF ELECTRICAL ENGINEERING-1 Time: 11:00 AM to 01:00 PM		Total Marks: 50			
 Instructions It is compulsory for students to w Attempt all questions in the quest The figures to the right of each qu wherever required. Simple, non-programmable scient BL - Bloom's Taxonomy Levels Create), CO - Course Outcomes. 	write Enrolment No. /Seat No. on the question paper ion paper. estion indicate full marks. Make suitable assumptions ific calculators are permitted. (R-Remember, U-Understanding, A-Application, N-	s with prop Analyze, 1	er jus E-Eva	tification luate, C-	
		Mark	Marks BL CO		
Q.1 Objective-Type Questions		[05]			
(a) Ohm's Law states that the cudirectly proportional to(i) Voltage	errent through a conductor between two points is (ii) Resistance	1	R	1	
(iii) Power	(iv) Energy				
(b) The unit of electrical energy	is	1	R	1	
(i) Watt	(ii) Coulomb				
(iii) Joule	(iv) Ohm				
(c) Kirchhoff's Voltage Law (KVL) is based on the law of:		1	R	2	
(i) Conservation of energy	(ii) Conservation of charge				
(iii) Conservation of power	(iv) Conservation of resistance				
(d) The star-delta transformation is useful for:		1	R	3	
(i) Analyzing three-phase ci	rcuits (ii) Solving DC circuits				
(iii) Finding current in resis	tors (iv) Circuit power measurement				
(e) Which law describes the induced electromotive force in a conductor moving through a magnetic field?		1	R	4	
(i) Ohm's Law	(ii) Faraday's Law				
(iii) Lenz's Law	(iv) Coulomb's Law				

Q.2	Attempt Any Three	[15]		
	(a) State and explain ohm's low & its limitation	5	R	1
	(b) Compare series & parallel circuit	5	R	1
	(c) Define Node Junction & Loop	5	R	2
	(d) Derive expression for equivalent capacitance when capacitors are connected in Parallel.	5	R	3
Q.3	Attempt Any Three	[15]		
	(a) Write and explain Thevenin's Theorem.	5	U	2
	(b) Write and explain Super Position Theorem.	5	U	2
	(c) Explain Charging of capacitor.	5	R	3
	(d) Comparison of Magnetic circuit and Electric circuit	5	R	4
Q.4	Attempt Any Three	[15]		
	(a) Explain steps for Mesh analysis.	5	A	2
	(b) Explain linear and nonlinear element.	5	A	2
	(c) What are the different types of capacitors? Describe in brief.	5	U	2
	(d) Faraday's Laws of electromagnetic induction.	5	Α	3
