Enrolment No/Seat No.:

R.N.G.PATEL INSTITUTE OF TECHNOLOGY-RNGPIT (An Autonomous College U/s UGC Act 1956)

B.Tech. SEMESTER-I, SEMESTER END EXAMINATION - WINTER 2024

Subject Code: 1ME101Date: 16-12-2024Subject Name: FUNDAMENTALS OF MECHANICAL ENGINEERINGTotal Marks: 70Time: 11:00 AM to 01:30 PMTotal Marks: 70

Instructions

1. It is **compulsory** for students to write **Enrolment No. /Seat No.** on the question paper.

- 2. Write answers of Section A and Section B in separate answer books.
- 3. Attempt all questions from both Section A and Section B.
- 4. Each section carries **35 marks**, with a total of **70 marks** for the examination.
- 5. The figures to the right of each question indicate full marks, make suitable assumptions with justification.
- 6. BL Bloom's Taxonomy Levels (R-Remember, U-Understanding, A –Application, N –Analyze, E Evaluate, C -Create), CO Course Outcomes.

SECTION A

Q.1 Objective-Type Questions

(a) In thermodynamics, a system refers to:

- (i) The surroundings of a process
- (ii) A specified region in space or a quantity of matter under study
- (iii) The energy required to perform work
- (iv) The force applied to an object

(**b**) Charles's Law states that at constant pressure:

- (i) Volume is inversely proportional to temperature
- (ii) Volume is directly proportional to temperature
- (iii) Volume is directly proportional to pressure
- (iv) Pressure is independent of temperature

(c) Superheated steam is steam:

- (i) At a temperature higher than the boiling point at a given pressure
- (ii) At a temperature lower than the boiling point
- (iii) That contains water droplets
- (iv) With zero dryness fraction

Marks BL CO

R 1

2

R

U 2

[05]

1

1

1

	(d) Which component of a centrifugal pure energy?	mp converts kinetic energy into pressure	1	R	3
	chergy.				
	(i) Volute casing	(ii) Impeller			
	(iii) Shaft	(iv) Suction pipe			
	(e) The window air conditioner has all its typically installed?	components in one unit. Where this unit is	1	A	3
	(i) In the basement	(ii) Outside the building			
	(iii) Through a wall or window	(iv) In the attic			
Q.2	Attempt Any Two		[10]		
	(a) Define the following thermodynamics (1) Zeroth law, (2) First law, (3) Both t	laws, he statements of second law.	5	U	1
	(b) Write a short on effect of global warmi	ng.	5	U	1
	(c) Explain the separating calorimeter with	its neat sketch.	5	R	2
Q.3	Attempt Any Two		[10]		
	(a) Explain adiabatic process. Derive the exercise energy, and change in enthalpy and heat	xpression for work done, change in internal at transfer.	5	R	2
	(b) Five kg of air is heated from an initial of at constant pressure 4 bar. Determine (and final temperature of air. Assume, R	volume of 0.5 m ³ to final volume of 1.3 m ³ (1) heat supplied, (2) work done, (3) initial R=0.287 kJ/kg K, Cp = 1.005 kJ/kg K.	5	A	2
	(c) Steam at 8 bar and dryness fraction of dryness fraction is 0.6. Calculate the we during process.	f 0.9 expand at constant pressure until the ork done and heat removed per kg of steam	5	A	2
Q.4	Attempt Any Two		[10]		
	(a) Explain with neat sketch the construction	on and working of Cochran boiler.	5	R	3
	(b) Explain the Vapour Absorption Refrige	eration (VAR) system.	5	U	3
	(c) Compare centrifugal pump and recipro	cating pump.	5	R	3

SECTION B

Marks BL CO

Q.5	Objective-Type Questions	[05]		
	(a) Pump is a	1	U	3
	(i) Power producing machine (ii) Power consuming machine			
	(iii) Universal machine (iv) All of these			
	(b) The ability of a material to resist fracture due to high impact loads is called	1	R	5
	(i) strength (ii) stiffness			
	(iii) toughness (iv) brittleness			
	(c) Which of the following brakes is primarily used in bicycle braking systems?	1	R	5
	(i) Block Brake (ii) Disc Brake			
	(iii) Band Brake (iv) Shoe Brake			
	(d) Two stroke diesel cycle is completed in revolution of crank shaft.	1	R	4
	(i) One (ii) Two			
	(iii) Three (iv) Four			
	(e) Spark plug is used in	1	R	4
	(i) Petrol engine (ii) Diesel engine			
	(iii) Steam engine (iv) Boiler			
Q.6	Attempt Any Two	[10]		
	(a) Describe the working principle of a two-stroke petrol engine with neat sketch.	5	U	4
	(b) Explain the types of centrifugal pumps and their applications in indust processes.	rial 5	A	3
	(c) A two-stroke cycle internal combustion engine has a piston diameter of 110	mm 5	A	5
	and a stroke length pf 140 mm. The mep exerted on the head of the piston is kN/m^2 . If it runs at a speed of 1000 r p m. Find the indicated power developed	600		

Q.7	Attempt Any Two	[10]		
	(a) Differentiate between clutch and coupling. Describe Disc Cluth.	5	Ν	5
	(b) Differentiate between belt drive and chain drive systems with practical applications.	5	Ν	5
	(c) Analyze the differences in efficiencies between indicated power and brake power	5	Ν	4
	in internal combustion engines.			
0.6	Attempt Any Two	[10]		
Q.0				
Q. 0	(a) Evaluate the advantages and limitations of ferrous and non-ferrous metals in engineering applications.	5	E	5
Q. 0	 (a) Evaluate the advantages and limitations of ferrous and non-ferrous metals in engineering applications. (b) Compare the effectiveness of disc and centrifugal clutches in power transmission. 	5 5 5	E E	5 5
Q.0	 (a) Evaluate the advantages and limitations of ferrous and non-ferrous metals in engineering applications. (b) Compare the effectiveness of disc and centrifugal clutches in power transmission. (c) Illustrate with examples the construction and application of band brakes in 	5 5 5 5	E E A	5 5 5
