R.N.G.PATEL INSTITUTE OF TECHNOLOGY-RNGPIT (An Autonomous College U/s UGC Act 1956)

B.Tech. SEMESTER-I, SEMESTER END EXAMINATION - WINTER 2024

Subject Code: 1EL101	Date: 16-12-2024
Subject Name: BASIC ELECTRICAL ENGINEERING	
Time: 11:00 AM to 01:30 PM	Total Marks: 70

Instructions

1. It is compulsory for students to write Enrolment No. /Seat No. on the question paper.

2. Write answers of Section A and Section B in separate answer books.

3. Attempt all questions from both Section A and Section B.

- 4. Each section carries 35 marks, with a total of 70 marks for the examination.
- 5. The figures to the right of each question indicate full marks, make suitable assumptions with justification.
 - 6. BL Bloom's Taxonomy Levels (R-Remember, U-Understanding, A Application, N Analyze, E Evaluate, C -Create), CO - Course Outcomes.

SECTION A

0.1 **Objective-Type Questions**

1 R (a) Which component opposes the flow of current in a circuit? (i) Inductor (ii) Capacitor (iii) Resistance (iv) Battery (b) In an inductive circuit, the current the voltage? 1 Ε (i) Lags (ii) Lead (iii) is less than (iv) is greater than R 1 (c) Which type of earthing is recommended for domestic electrical systems? (ii) Pipe Earthing (i) Road Earthing (iv) Strip Earthing (iii) Grid Earthing 1 Ε

(d) For three phase circuit, the phase angle is always _____ (ii) 120° (i) 270°

(iv) 0° (iii) 240°

Marks BL CO

3

3

5

4

[05]

	(e) In a parallel circuit, how does the total current compare to the individual branch currents?	1	R	3
	(i) It is the average of the branch (ii) It is the maximum branch current currents			
	(iii) It is the sum of the branch (iv) It is equal to the largest branch current			
Q.2	Attempt Any Two	[10]		
	(a) Define the following terms for AC (alternating current) signal:(i)Frequency (ii) Time Period (iii) Amplitude (iv) Peak Factor (v) Form Factor	5	R	3
	(b) Explain the phenomena of generation of Alternating voltages and currents and derive expression for it with suitable diagrams	5	E	3
	(c) Prove that in a purely capacitive circuit power consumed is zero when a.c. voltage is applied. Draw relevant phasor diagram and waveforms.	5	Ε	3
Q.3	Attempt Any Two	[10]		
	(a) Explain the R-L-C series resonance phenomena.	5	U	4
	(b) Derive the relation between line-voltage and phase-voltage for three-phase four wire star connection network.	5	Ε	4
	(c) Explain the two wattmeter method for measurement of 3-phase power.	5	U	4
Q.4	Attempt Any Two	[10]		
	(a) Explain with neat sketch general construction of cable.	5	U	5
	(b) State the different methods of earthing and explain any one of them.	5	U	5
	(c) Calculate the electricity bill amount for a month of April, if 4 bulbs of 40 W for 5 h, 4 tube lights of 60 W for 5 h, a TV of 100 W for 6 h, a washing machine of	5	E	5

400 W for 3 h, a water pump of 0.5 HP for 15 minutes are used per day. The cost per unit is Rs 3.50. Consider 1 HP = 746 watts

SECTION B

Marks BL CO

Q.5	Objective-Type Questions		[05]		
	(a) In a DC circuit with a resistor of 10Ω and is the power dissipated by the resistor?	a voltage source of 20V in series, what	1	N	3
	(i) 2W	(ii) 20W			
	(iii) 40W	(iv) 400W			
	(b) Which of the following configurations we resistance?	ould result in the highest total	1	U	4
	(i) Three resistors in series	(ii) Three resistors in parallel			
	(iii) Two resistors in series and one in parallel	(iv) Two resistors in parallel and one in series			

(c) Find the current through 3Ω resistor in the circuit shown below.

Q.6

(a) Describe the process of Star-Delta conversion and its application in circuit 5 R 1 analysis.

	(b) Explain the differences between series and parallel circuits. Provide examples of each type of circuit.	5	Α	3
	(c) Explain the concept of electrical energy and power. How are they related? Give examples of how electrical energy is converted to other forms in everyday applications.	5	U	4
Q.7	Attempt Any Two	[10]		
	(a) State and explain Kirchhoff's Voltage Law (KVL). Use this law to analyze a circuit with two loops and three resistors, showing each step of your calculation.	5	R	2
	(b) Explain the concepts of self-inductance and mutual inductance. Derive the mathematical expressions for each and discuss the factors affecting them.		U	2
	(c) Define electric field intensity, electric flux, and electric flux density.	5	R	1
Q.8	Attempt Any Two	[10]		
Q.8	Attempt Any Two(a) Using Fleming's Right-Hand Rule, describe the direction of induced current in a conductor moving through a magnetic field. Illustrate with a diagram.	[10] 5	A	1
Q.8	 Attempt Any Two (a) Using Fleming's Right-Hand Rule, describe the direction of induced current in a conductor moving through a magnetic field. Illustrate with a diagram. (b) Describe the structure and function of a capacitor. Explain how capacitors behave when connected in series and in parallel, and derive the equivalent capacitance for both configurations. 	[10] 5 5	A U	1
