R.N.G.PATEL INSTITUTE OF TECHNOLOGY-RNGPIT (An Autonomous College U/s UGC Act 1956)

B.Tech. SEMESTER-I, SEMESTER END EXAMINATION - WINTER 2024

Subject Code: 1CH101 Subject Name: FUNDAMENTALS OF CHEMICAL ENGINEERING Time: 11:00 AM to 01:30 PM **Total Marks: 70**

Instructions

Q.1

1. It is compulsory for students to write Enrolment No. /Seat No. on the question paper.

- 2. Write answers of Section A and Section B in separate answer books.
- 3. Attempt all questions from both Section A and Section B.
- 4. Each section carries 35 marks, with a total of 70 marks for the examination.
- 5. The figures to the right of each question indicate full marks, make suitable assumptions with justification.
- 6. BL Bloom's Taxonomy Levels (R-Remember, U-Understanding, A Application, N Analyze, E Evaluate, C -Create), CO - Course Outcomes.

SECTION A

Marks BL CO

L	Objective-Type Questions		[05]		
	a) In which of the following systems does mass transfer occur across the system boundary?		1	U	4
	(i) Isolated system	(ii) Closed system			
	(iii) Open system	(iv) None of these			
	(b) Zeroth law of thermodynamics helped in the creation of which scale?		1	R	4
	(i) Temperature	(ii) Heat energy			
	(iii) Pressure	(iv) Internal energy			
	(c) First law of thermodynamics is based on?		1	R	4
	(i) Conservation of energy	(ii) Conservation of mass			
	(iii) Conservation of momentum	(iv) Conservation of work			
	(d) Which of the following is the rate of heat transfer unit?		1	R	5
	(i) Watt	(ii) Pascal			
	(iii) Joule	(iv) Newton			

Date: 16-12-2024

	(e) Thermal diffusivity of a substance is		R	5
	(i) Directly proportional to the thermal conductivity(ii) Inversely proportional to density of substance			
	(iii) Inversely proportional to specific (iv) All of the these			
Q.2	Attempt Any Two	[10]		
	(a) Explain importance of chemical engineering thermodynamics.	5	U	4
	(b) Distinguish between system and surrounding.	5	R	4
	(c) A gas absorbs 500 Joules of heat and 200 Joules of work. What is the change in internal energy of gas?	5	A	4
Q.3	Attempt Any Two	[10]		
	(a) Explain the importance of mass transfer operation in chemical industry.	5	U	5
	(b) Explain modes of heat transfer also write various law's applicable to it.	5	U	5
	(c) Explain Fick's law and Raoult's law,	5	U	5
Q.4	Attempt Any Two	[10]		
	(a) Explain the importance of heat transfer operation in chemical industry.	5	U	5
	(b) Explain classification of mass transfer operations.	5	U	5
	(c) Write basic difference between evaporation, boiling, cooling, and condensation.	5	R	5

SECTION B

Marks BL CC

Q.5	Objective-Type Questions		[05]			
	(a) The specific gravity of liquid fluid is		1	R	1	
	(i) Dimensionless quantity	(ii) fundamental quantity				
	(iii) Ratio of density of fluid to the density of water	(iv) Both (i) and (iii)				
	(b) The conversion of 760 mm Hg equals to		1	U	2	
	(i) 14.7 kgf/cm ²	(ii) 14.7 psi				
	(iii) 14.7 MPa	(iv) 14.7 Torr				
	(c) Filtration is		1	R	1	
	(i) Unit operation	(ii) Unit Process				
	(iii) Heat treatment process	(iv) None of these				
	(d) Potential flow is		1	R	1	
	(i) Cross flow	(ii) Rotational flow				
	(iii) Irrotational flow	(iv) None of these				
	(e) The relation between calorie and joule is		1	U	2	
	(i) 1J = 4.187 Cal	(ii) 1 Cal = 4.187 J				
	(iii) 1 J = 4.187 kCal	(iv) 1 kCal = 1 J				
Q.6	Attempt Any Two		[10]			
	(a) Discuss the importance and role of chemi	cal engineer in industries.	5	U	1	
	 (b) A caustic flake obtained from manufacturer are found to contain 70 ppm si (SiO₂). Convert this impurity into wt. %. (c) Convert 31000 lit/hr volumetric flow rate into mass flow rate in kg/sec. 		5	A	2	
			5	A	2	
	Data: Density = 783 kg/m^3					
Q.7	Attempt Any Two		[10]			
	 (a) Differentiate between batch, semi batch and continuous process/operations wi suitable examples. (b) Write a brief explanation of Newton's Law of Viscosity. 		5	R	3	

	(c) Compare and contrast Newtonian fluids and non-Newtonian fluids, highlighting their key differences in terms of viscosity and flow behavior.	5	U	3
Q.8	Attempt Any Two	[10]		
	(a) Explain the different types of fluid classifications based on their properties and	5	R	3
	flow behavior.			
	(b) The analysis of gas sample from municipal waste treatment plant is 72 $\%$	5	Α	2
	Methane (CH ₄), 23 % Carbon dioxide (CO ₂) and 5% Ammonia (NH ₃) on volume			
	basis. Determine:			
	A. The average molar mass (Average molecular weight) of the gas.			
	B. Density of the gas mixture at 20 °C and atmospheric pressure.			
	(c) Differentiate between unit process and unit operation.	5	U	1
