R.N.G.PATEL INSTITUTE OF TECHNOLOGY-RNGPIT

(An Autonomous College U/s UGC Act 1956)

B. Tech. SEMESTER-I, SEMESTER END EXAMINATION - WINTER 2024

Date: 09-12-2024 **Subject Code: 1SH103**

Subject Name: CALCULUS

Time: 11:00 AM to 02:00 PM **Total Marks: 70**

Instructions

- 1. It is **compulsory** for students to write **Enrolment No. /Seat No.** on the question paper.
- 2. Write answers of Section A and Section B in separate answer books.
- 3. Attempt all questions from both Section A and Section B.
- 4. Each section carries **35 marks**, with a total of **70 marks** for the examination.
- 5. The figures to the right of each question indicate full marks, make suitable assumptions with justification.
- 6. BL Bloom's Taxonomy Levels (R-Remember, U-Understanding, A -Application, N -Analyze, E -Evaluate, C -Create), CO - Course Outcomes.

SECTION A

Marks BL CO

0.1 **Objective-Type Questions** [05]

(a) If
$$u = \log(x^2 + y^2)$$
 then $\frac{\partial u}{\partial x} = \underline{\hspace{1cm}}$

(i)
$$\frac{2y}{x^2 + y^2}$$
 (ii) $\frac{2}{x^2 + y^2}$

$$(ii) \frac{2}{x^2 + y^2}$$

(iii)
$$\frac{2x}{x^2 + y^2}$$
 (iv) $\frac{xy}{x^2 + y^2}$

$$(iv) \frac{xy}{x^2 + y^2}$$

(b) If
$$x^3 + y^3 + 3xy = 0$$
 then $\frac{dy}{dx} =$ _____

1 A 2

(i)
$$-\frac{x^2 - y}{y^2 - x}$$

(i)
$$-\frac{x^2 - y}{y^2 - x}$$
 (ii) $-\frac{x^2 + y}{y^2 + x}$

(iii)
$$\frac{x^2 + y}{x - y^2}$$
 (iv) $\frac{x^2 + y}{x - y}$

$$(iv) \frac{x^2 + y}{x - y}$$

- (c) The partial differential equation formed by eliminating arbitrary constants from 4 the equation $z = ax^2 + by^2$ is
 - (i) 2z = xp + yq (ii) z = xq + yp
 - (iii) z = xp + yq
- (iv) none of these
- (d) The solution of the equation z = px + qy pq is _____

1 4 A

- (i) z = ax + by + ab
- (ii) z = ax + by pq
- (iii) z = ax + by pq (iv) none of these

(e) If $\overline{r} = x\hat{i} + y\hat{j} + z\hat{k}$ then $div \overline{r}$ is_____

A 2

(i) 0

- **(ii)** 1
- (iii) 2
- (iv) 3

Q.2 Attempt Any Two

[10]

1

(a) If
$$u = f(x - y, y - z, z - x)$$
, then show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.

5 A 2

(b) If
$$u = \cos ec^{-1} \left(\sqrt{\frac{x^{1/2} + y^{1/2}}{x^{1/3} + y^{1/3}}} \right)$$
 then prove that
$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y \frac{\partial^{2} u}{\partial y^{2}} = \frac{1}{144} \tan u \left(13 + \tan^{2} u \right)$$

5 A 2

(c) Find the extreme values of the function $x^3 + y^3 - 3x - 12y + 20$

5 A 2

Q.3 Attempt Any Two

[10]

(a) Eliminate the arbitrary function from the equation $z = xy + f(x^2 + y^2)$

5 A 4

(b) Solve
$$x^2 p + y^2 q = z^2$$

5 A 4

(c) Solve (i)
$$\sqrt{p} + \sqrt{q} = 1$$
 (ii) $p - x^2 = q + y^2$

5 A

Q.4 Attempt Any Two

[10]

(a) Find the directional derivatives of the function $\phi = xyz$ at the point (1,1,1) in the direction of the vector $\hat{i} + \hat{j} + \hat{k}$

5 A 5

(b) Prove that the vector $\vec{F} = (3x + 2y + 4z)\hat{i} + (2x + 5y + 4z)\hat{j} + (4x + 4y - 8z)\hat{k}$ is both solenoidal and irrotational

5 R,U 5

(c) Find the work done, when a force $\overline{F} = (x^2 - y^2 + x)\hat{i} - (2xy + y)\hat{j}$ moves a particle from (0,0) to the point (1,1) along $y^2 = x$.

5 A 5

SECTION B

Marks BL CO

Q.5 Objective-Type Questions

[05]

(a) Let $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$, then the Eigen value of A are _____

1 U 1

(i) -6, -1

(ii) 6,1

(iii) 6,-1

- (iv) -6.1
- **(b)** The rank of the matrix is $\begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$ is _____

1 U 1

(i) 0

(ii) 1

(iii) 3

- (iv) 2
- (c) The solution of $(D^2 + 6D + 9)y = 0$ is _____

1 A 3

- (i) $(c_1 + c_2 x)e^{-3x}$
- **(ii)** $c_1 e^{-3x}$

(iii) $c_1 c_2 e^{-3x}$

- (iv) $c_1 e^{-x}$
- (d) The Wronskian of the two functions $\sin 2x$ and $\cos 2x$ is

1 A 3

(i) 1

(ii) 2

(iii) -1

- (iv) -2
- (e) Particular integral of $(D^2 + 4)y = \cos 2x$ is _____

1 A 3

 $(i) \frac{x \sin 2x}{2}$

(ii) $\frac{x \sin x}{4}$

(iii) $\frac{x\sin 2x}{4}$

(iv) $x \sin 2x$

Q.6 Attempt Any Two

[10]

(a) Find inverse of the matrix by Gauss Jordan method $\begin{bmatrix} 2 & 3 & 4 \\ 4 & 3 & 1 \\ 1 & 2 & 4 \end{bmatrix}$

5 A 1

- x + y + 2z = 9
- (b) Solve the system of equations by Gauss Elimination method 2x+4y-3z=1

5 A 1

3x + 6y - 5z = 0

(c) Find Eigen value and Eigen vector of the matrix $\begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -4 & -3 \end{bmatrix}$

5 A 1

Q.7 Attempt Any Two

- [10]
- (a) Form the differential equation by eliminating arbitrary constants from $y = Ae^{-3x} + Be^{2x}$
- 5 A 3

(b) Solve $(x^3 + 3xy^2)dx + (3x^2y + y^3)dy = 0$

5 A 3

(c) Solve $\frac{dy}{dx} + \frac{4x}{1+x^2}y = \frac{1}{(1+x^2)^3}$

5 A 3

Q.8 Attempt Any Two

[10]

(a) Solve $(D^2 + 16)y = x^4 + e^{3x} + \cos 3x$

5 A 3

- **(b)** Using method of variation of parameter solve $(D^2 + 1)y = \cos ec x$
- 5 A 3
- (c) Using method of Undetermined coefficients, solve the following equations $y'' + 4y = 8x^2$
- 5 A 3
