R.N.G.PATEL INSTITUTE OF TECHNOLOGY-RNGPIT

(An Autonomous College U/s UGC Act 1956)

B. Tech. SEMESTER-I, SEMESTER END EXAMINATION - WINTER 2024

Date: 09-12-2024 **Subject Code: 1SH102**

Subject Name: MATHEMATICS-I

Time: 11:00 AM to 02:00 PM **Total Marks: 70**

Instructions

- 1. It is **compulsory** for students to write **Enrolment No. /Seat No.** on the question paper.
- 2. Write answers of Section A and Section B in separate answer books.
- 3. Attempt all questions from both **Section A** and **Section B**;
- 4. Each section carries **35 marks**, with a total of **70 marks** for the examination.
- 5. The figures to the right of each question indicate full marks, make suitable assumptions with justification.
- 6. BL Bloom's Taxonomy Levels (R-Remember, U-Understanding, A -Application, N -Analyze, E -Evaluate, C -Create), CO - Course Outcomes.

SECTION A

Mar BL CO

Q.1 Objective-Type Questions [05]

(a) The value of
$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{2x^2 + y}{4x^2 - y}$$
 is

1 2

(i) 1

- (ii) 0
- (iii) -1
- (iv) does not exist

(b) If
$$u = x^2y + y^2z + z^2y$$
, then $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = \underline{\hspace{1cm}}$

1 A 2

- (i) 2xy + 2yz + 2zx (ii) $(x + y + z)^2$

(iii)
$$\frac{1}{x+y+z}$$
 (iv) $x^2 + y^2 + z^2$

(iv)
$$x^2 + y^2 + z^2$$

(c)
$$\int_{-1}^{1} \int_{0}^{2} (1 - 6x^{2}y) dx dy = \underline{\hspace{1cm}}$$

1

(i) 1

- (ii) 0
- (iii) 4
- (iv) 2

(d) If \overline{F} is conservative, then _____

1 U 5

- (i) $\nabla \times \overline{F} = 0$
- (ii) $\nabla \times \overline{F} \neq 0$
- (iii) $\nabla \overline{F} = 0$
- (iv) $\nabla \cdot \overline{F} = 0$

(e) If $\phi = xyz$, then the value of $|grad \phi|$ at (1, 2, -1) is

1 A 5

(i) 0

- (ii) 1
- **(iii)** 2
- (iv) 3

Q.2 Attempt Any Two

[10]

(a) If u = f(x - y, y - z, z - x), then show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.

5 A 2

(b) State modified Euler's theorem. If $u = \sin^{-1}\left(\frac{x^{\frac{1}{4}} + y^{\frac{1}{4}}}{x^{\frac{1}{6}} + y^{\frac{1}{6}}}\right)$, prove

that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = \frac{1}{144} \tan u [\tan^2 u - 11]$.

- (c) (i) Find the equations of the tangent plane and normal line to the surface $2x^2 + y^2 + 2z = 3$ at (2,1,-3).
- 5 A 2

(ii) If $x^y + y^x = c$, find $\frac{dy}{dx}$.

Q.3 Attempt Any Two

[10]

(a) Change the order of integration and evaluate $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} dy dx$.

5 A 4

(b) Evaluate $\iint \frac{x^2 y^2}{x^2 + y^2} dxdy$ over the region bounded by the circles $x^2 + y^2 = a^2 \text{ and } x^2 + y^2 = b^2 \ (a > b).$

- 5 A 4
- (c) Evaluate $\iint (x^2 y^2) dy dx$ over the triangle with the vertices (0,1), (1,1) and (1,2). 5 **A**

Q.4 Attempt Any Two

[10]

- (a) (i) Find the directional derivative of $\phi = xy^2 + yz^2$ at point (2,-1,1) in the direction of the vector $\hat{i} + 2\hat{j} + 2\hat{k}$.
- 5 R,U 5
- (ii) If $\vec{A} = (ax^2y + yz)\hat{i} + (xy^2 xz^2)\hat{j} + (2xyz 2x^2y^2)\hat{k}$ is solenoidal, find the constant a.
- **(b)** A vector field is given $\vec{F} = (x^2 y^2 x)\hat{i} (2xy + y)\hat{j}$. Show that the field is irrotational and find its scalar potential.

5 A 5

(c) Prove that $\int_C \overline{F} \cdot d\overline{r} = 3\pi$, where $\overline{F} = z\hat{i} + x\hat{j} + y\hat{k}$ and C is the arc of the curve

5 A 5

 $\overline{r} = \cos t \hat{i} + \sin t \hat{j} + t \hat{k}$ from t = 0 to $t = 2\pi$.

SECTION B

Marks BL CO

Objective-Type Questions Q.5

[05]

(a) The Eigen value of $A \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{bmatrix}$ are _____

U 1 1

(i) 0,0,0

(ii) 1,1,1

(iii) 1,2,3

- (iv) -1,-2,-3
- **(b)** The rank of the matrix is $\begin{bmatrix} 1 & 1 & 1 \\ -1 & -1 & -1 \\ 1 & 1 & 1 \end{bmatrix}$ is _____

U 1 1

(i) 1

(ii) 0

(iii) 3

- (iv) 2
- (c) The equation M(x, y)dx + N(x, y)dy = 0 is exact if _____

1 A 3

(i) $\frac{\partial M}{\partial x} = \frac{\partial N}{\partial y}$

- (ii) $\frac{\partial M}{\partial x} = -\frac{\partial N}{\partial y}$
- (iii) $\frac{\partial M}{\partial y} = -\frac{\partial N}{\partial x}$ (iv) $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$
- (d) The solution of y'' 4y' + 4y = 0 is ____

1 3

- (i) $y = (c_1 + c_2 x)e^{2x}$
- (ii) $y = (c_1 + c_2 x)e^{-2x}$
- (iii) $y = c_1 e^{2x} + c_2 e^{-2x}$ (iv) $y = c_1 \cos 2x + c_2 \sin 2x$
- (e) The particular integral of $y'' + y = e^{-x}$ is _____

1 A 3

(i) $\frac{1}{2}xe^{-x}$

(ii) $\frac{1}{2}e^{-x}$

(iii) $-\frac{1}{2}xe^{-x}$

(iv) $-\frac{1}{2}e^{-x}$

Attempt Any Two Q.6

[10]

(a) Find inverse of the matrix by Gauss Jordan method $\begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$

5 1

$$x + 2y + z = 8$$

- (b) Investigate for what values of λ and μ the equations 2x + 2y + 2z = 13 have (i) $3x + 4y + \lambda z = \mu$
- 5 A 1

no solution (ii) a unique solution, and (iii) many solutions

(c) Find Eigen value and Eigen vector $\begin{bmatrix} 1 & 2 & 2 \\ 0 & 2 & 1 \\ -1 & 2 & 2 \end{bmatrix}$

5 A 1

Q.7 Attempt Any Two

[10]

(a) Solve
$$(y^2 - x^2)dx + 2xydy = 0$$

5 A 3

(b) Solve
$$\frac{dy}{dx} + y \tan x = \sin 2x$$
, $y(0) = 0$

(c) Solve
$$\frac{dy}{dx} + \frac{y}{x} = x^3 y^3$$

Q.8 Attempt Any Two

[10]

(a) Solve (i)
$$(D^3 + 1)y = 0$$
 (ii) $(D^3 - 3D^2 - D + 3)y = 0$

(b) Solve
$$y''' - 3y'' + 3y' - y = 4e^x$$

(c) Using method of variation of parameter solve
$$\frac{d^2y}{dx^2} + y = \cos ecx$$

5 A 3
