R.N.G.PATEL INSTITUTE OF TECHNOLOGY-RNGPIT (An Autonomous College U/s UGC Act 1956)

IMSc-IT. SEMESTER-I, SEMESTER END EXAMINATION - WINTER 2024

Subject Name: FUNDAMENTAL OF MATHEMATICS

Subject Code: 1BS102

Tim	e: 11:00 AM to 02:00 PM		Total Ma	arks	5: 70
1 2 3 4 5	 ructions It is compulsory for students to write Enrop. Write answers of Section A and Section B Attempt all questions from both Section A Each section carries 35 marks, with a total The figures to the right of each question ind BL - Bloom's Taxonomy Levels (R-Reme Evaluate, C -Create), CO - Course Outcome 	in separate answer books . and Section B . of 70 marks for the examination. licate full marks, make suitable assumptions ember, U-Understanding, A –Application,	s with justif		
	SE	ECTION A			
Q.1	Objective-Type Questions		Marks [05]	BL	CO
	(a) The characteristic equation of a matrix	x A is obtained by	1	R	3
	(i) $ A - \lambda I = 0$	(ii) $ A+\lambda I = 0$			
	$(\mathbf{iii}) [A - \lambda I] = 0$	$(\mathbf{iv}) A\lambda I = 0$			
	(b) Which of the following matrices satisf	fies the Cayley-Hamilton theorem?	1	U	3
	(i) Any diagonalizable matrix.	(ii) Any invertible matrix.			
	(iii) Any square matrix.	(iv) Only symmetric matrices.			
	(c) The derivative of a function f is given (i) $f'(x) = \lim_{h \to 0} \frac{f(x+h)+f(x)}{h}$ (iii) $f'(x) = \lim_{x \to 0} \frac{f(x+h)+f(x)}{x}$	by: (ii) $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ (iv) $f'(x) = \lim_{x \to 0} \frac{f(x+h) - f(x)}{x}$	1	R	4
	(d) The symbol $\frac{\partial}{\partial x}$ represents:		1	R	5

(iii) The integration with respect to x (iv) The derivative with respect to all

variables

Date: 13-12-2024

(e) Which of the following indeterminate forms can be resolved using L'Hospital's 1 R 5 Rule?

(i) 0^0	$(ii)\frac{0}{0}$
(iii) $\infty - \infty$	$(iv) \infty$

Q.2 Attempt Any Two

5 (a) Find the eigen values and the corresponding eigen vectors of the Α 3 matrix $\begin{bmatrix} -2 & 5 & 4 \\ 5 & 7 & 5 \\ 4 & 5 & -2 \end{bmatrix}$.

(**b**) Show that the given matrix $\begin{bmatrix} -i & 3+2i & -2-i \\ -3+2i & 0 & 3+4i \\ 2-i & -3-4i & -2i \end{bmatrix}$ is Skew Hermitian. 5 Α 3

(c) Let
$$A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$
. Find matrix *P* such that $P^{-1}AP$ is diagonalizable **5** A **3** matrix.

Q.3 **Attempt Any Two**

(a) Evaluate the following:

(i)
$$\lim_{x \to 0} \frac{\cos x - 1}{x}$$

(ii) $\lim_{x \to \infty} \frac{2x^2 - 3x + 4}{x^2 + 4x - 1}$
(b) Verify whether the function $f(x) = \begin{cases} x + 2, & \text{if } x < 1 \\ 1, & \text{if } x = 1 \\ 2 - x, & \text{if } x > 1 \end{cases}$
5 A 4

(i)
$$\frac{d}{dx}(e^x \sin x)$$

(ii) $\frac{d}{dx}[\log(x^2 - 3x + 2)]$

O.4 Attempt Any Two

[10]

5

[10]

[10]

5

4

Α

Α

4

- (a) State Rolle's Theorem and verify it for $y = x^2 + 1$ in [-1,1]. **R,A** 5 5
 - (b) Expand the function $f(x) = 2x x^2$ in terms of (x + 3) by using Taylor's 5 5 Α series. 5 5 А
 - (c) Find the extreme values of the function $f(x, y) = x^2 + y^2 - 6x - 8y + 9$

SECTION B

		BECHOLLE			
			Marks	s BL	со
Q.5	Objective-Type Questions		[05]		
	(a) Power set of Empty set has exactly element/elements.		1	U	1
	(i) 0	(ii) 1			
	(iii) 2	$(iv) \infty$			
	b) A Set which described with the help of a statement is called		1	R	1
	(i) Tabular form	(ii) Roster form			
	(iii) Set-Builder form	(iv) Both (i) and (ii)			
	(c) Which of the following represents the empty set?		1	U	1
	(i) { }	(ii) Ø			
	(iii) {Ø}	(iv) Both (i) and (ii)			
	(d) Which of the following is the s	set builder form of a set	1	U	1
	$A = \{1, 2, 4, 8, 16, 32 \dots\}?$				
	(i) $\{x/x \in \mathbb{N}\}$	$(\mathbf{ii}) \{2x/x \in W\}$			
	(iii) $\{x^2/x \in \mathbb{N}\}$	$(\mathbf{iv}) \{ 2^x / x \in W \}$			
	(e) If the function $f: A \to B$ is injection	If the function $f: A \to B$ is injective and surjective then		U	2
	(i) f^{-1} exists	(ii) f is invertible			
	(iii) Both (i) and (ii)	(iv) Neither (i) and (ii)			
Q.6	Attempt Any Two		[10]		
	(a) Check whether the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = 2x - 1$ is bijective or not.		5	U	1
	(b) Find domain, co-domain and range of the following functions:		5	A	1
	(ii) If $f: \mathbb{Z} \to \mathbb{N}$ be a function	nd –2, –1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}			
) (**,				

	(c) Let the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ and $g: \mathbb{R} \to \mathbb{R}$ defined by $g(x) = 2x + 1$ then find $f \circ g$ and $g \circ f$.		Α	1
Q.7	Attempt Any Two			
	(a) Find inverse if the matrix $A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$ by using elementary transformation.	5	A	2
	(b) Reduce the matrix $\begin{bmatrix} 1 & 2 & 3 & 2 \\ 1 & 2 & 3 & 4 \\ 2 & 6 & 7 & 5 \end{bmatrix}$ into normal form.	5	A	2
	(c) Solve the following system of equations using Cramer's Rule:		A	2
	5x - 6y + 4z = 157x + 4y - 3z = 192x + y + 6z = 46			
Q.8	Attempt Any Two			
	(a) Transform the matrix $\begin{bmatrix} 1 & 3 & 3 \\ 2 & 4 & 10 \\ 3 & 8 & 4 \end{bmatrix}$ into a unit matrix. (b) Find rank of the matrix $\begin{bmatrix} 1 & 2 & -1 & 3 \\ 4 & 1 & 2 & 1 \\ 3 & -1 & 1 & 2 \\ 1 & 2 & 0 & 1 \end{bmatrix}$. (c) Discuss the consistency of the following system of equations:		A	2
			A	2
			A	2
	2x + 3y + 4z = 11x + 5y + 7z = 153x + 11y + 13z = 25.			
