
University of Portsmouth, Faculty of Technology, Department of Electronic and Computer Engineering
B122L – Principles of Digital Systems

 1

University of Portsmouth
Faculty of Technology
Department of Electronic and Computer Engineering

Module: Principles of DigitalSystems
Module Code: B122L
Module Topic: Microcontroller Applications
Lecturer: Branislav Vuksanovic

Lecture Notes:
Basics of C Programming
for
Embedded Systems

This document reviews some general rules of C programming and
introduces certain specifics of C programming for 8051 series of
microcontrollers. Simple C programs are listed and discussed in details
to illustrate the main points. This should provide reader with sufficient
knowledge to develop and test other, more complicated C programs for
small scale embedded systems employing this microcontrollers.

Content

Introduction to C Programming for Embedded Systems 2
Template for Embedded C Program ... 3
C Directives .. 4
Example 1 ... 5
Programming Time Delays ... 6
Indefinite Loops .. 6
Variables in Embedded C ... 7
Example 2 ... 8
C Functions .. 9
Example 3 ... 9
Other Loops in C ... 10
Example 4 ... 10
Making Decisions in the Program ... 11
? Operator .. 11
Example 5 ... 12
Short Hand Notations ... 12
Logical and Bit-wise Operations .. 12
Arrays ... 13
Example 6 ... 13
Example 7 ... 14

University of Portsmouth, Faculty of Technology, Department of Electronic and Computer Engineering
B122L – Principles of Digital Systems

 2

Introduction to C Programming for Embedded
Systems

- most common programming languages for embedded systems are

C, BASIC and assembly languages
- C used for embedded systems is slightly different compared to C

used for general purpose (under a PC platform)
- programs for embedded systems are usually expected to monitor

and control external devices and directly manipulate and use the
internal architecture of the processor such as interrupt handling,
timers, serial communications and other available features.

- there are many factors to consider when selecting languages for
embedded systems

 Efficiency - Programs must be as short as possible
and memory must be used efficiently.

 Speed - Programs must run as fast as possible.
 Ease of implementation
 Maintainability
 Readability

- C compilers for embedded systems must provide ways to examine

and utilise various features of the microcontroller's internal and
external architecture; this includes:

 Interrupt Service Routines
 Reading from and writing to internal and external

memories
 Bit manipulation
 Implementation of timers / counters
 Examination of internal registers

- most embedded C compilers (as well as ordinary C compilers) have

been developed supporting the ANSI [American National Standard

for Information] but compared to ordinary C they may differ in terms
of the outcome of some of the statements

- standard C compiler, communicates with the hardware components
via the operating system of the machine but the C compiler for the
embedded system must communicate directly with the processor
and its components

- For example consider this statement:

printf(" C - Programming for 8051\n");

In standard C running on a PC platform, the statement causes the
string inside the quotation to be displayed on the screen. The same
statement in an embedded system causes the string to be transmitted
via the serial port pin (i.e TXD) of the microcontroller provided the serial
port has been initialized and enabled.

- Another example:

c=getch();

In standard C running on a PC platform this causes a character to be
read from the keyboard on a PC. In an embedded system the
instruction causes a character to be read from the serial pin (i.e. RXD)
of the microcontroller.

University of Portsmouth, Faculty of Technology, Department of Electronic and Computer Engineering
B122L – Principles of Digital Systems

 3

Template for Embedded C Program

#include <reg66x.h>
void main(void)
{

// body of the program goes here

}

- the first line of the template is the C directive “#include <reg66x.h>”
- this tells the compiler that during compilation, it should look into this

file for symbols not defined within the program
- “reg66x.h” file simple defines the internal special function registers

and their addresses
- part of “reg66x.h” file is shown below

/*---*/
/* Include file for 8xC66x SFR Definitions */
/* Copyright Raisonance SA, 1990-2000 */
/*---*/

/* BYTE Registers */
at 0x80 sfr P0 ;
at 0x90 sfr P1 ;
at 0xA0 sfr P2 ;
at 0xB0 sfr P3 ;
at 0xD0 sfr PSW ;
at 0xE0 sfr ACC ;
at 0xF0 sfr B ;
at 0x81 sfr SP ;
at 0x82 sfr DPL ;
at 0x83 sfr DPH ;
at 0x87 sfr PCON ;

at 0x88 sfr TCON ;
at 0x89 sfr TMOD ;
at 0x8A sfr TL0 ;
at 0x8B sfr TL1 ;
at 0x8C sfr TH0 ;
at 0x8D sfr TH1 ;
…

In this file, the numerical addresses of different special function
registers inside the processor have been defined using symbolic
names, e.g. P0 the symbol used for port 0 of the processor is assigned
its corresponding numeric address 80 in hexadecimal. Note that in C
numbers that are hexadecimal are represented by the 0x.

- the next line in the template declares the beginning of the body of

the main part of the program
- the main part of the program is treated as any other function in C

program
- every C program should have a main function
- functions are like “procedures” and “subroutines” in other languages
- C function may be written in one of the following formats:

 it may require some parameters to work on
 it may return a value that it evaluates or determines
 it may neither require parameters nor return any value

- if a function requires any parameters, they are placed inside the
brackets following the name of the function

- if a function should return a value, it is declared just before the name
of the function

- when the word ‘void’ is used before the function name it indicates
that the function does not return any value

- when the word ‘void’ is used between the brackets it indicates that
the function does not require any parameters

- main function declaration:

Ele-C103
Highlight

Ele-C103
Highlight

Ele-C103
Highlight

Ele-C103
Highlight

University of Portsmouth, Faculty of Technology, Department of Electronic and Computer Engineering
B122L – Principles of Digital Systems

 4

void main(void)

therefore, indicates that the main function requires no parameters and
that it does not return any value.

- what the function must perform will be placed within the curly

brackets following function declaration (your C code)

C Directives

- #include is one of many C directives
- it is used to insert the contents of another file into the source code of

the current file, as previously explained
- there are two slightly different form of using #include directive:

#include < filename >
 or

#include “ filename “

- the first form (with the angle brackets) will search for the include file

in certain locations known to the compiler and it is used to include
standard system header files (such are stdlib.h and stdio.h in
standard C)

- the second form (with the double quotes) will search for the file in
the same directory as the source file and this is used for header files
specific to the program and usually written by the programmer

- all directives are preceded with a “#” symbol
- another useful directive is a #define directive

- #define directive associates a symbolic name with some numerical
value or text.

- wherever that symbolic name occurs after the directive the
preprocessor will replace it with the specified value or text

- the value of “ON” in the program can be defined as 0xFF throughout
the program using:

#define ON 0xFF

- this approach may be used to define various numerical values in the
program using more readable and understandable symbols.

- the advantage of using symbols rather than the actual numerical
values is that, if you need to change the value, all you need to do is
to change the number that is assigned to the symbol in the define
statement rather than changing it within the program which in some
cases may be a large program and therefore tedious to do

Ele-C103
Highlight

University of Portsmouth, Faculty of Technology, Department of Electronic and Computer Engineering
B122L – Principles of Digital Systems

 5

Example 1

Program to turn the LEDs on port 1 ON (see figure).

#include <reg66x.h>
void main(void)
{

P1 = 0xFF;
}

The body of the main function consists of just one statement and that is
P1=0xFF. This tells the compiler to send the number 0xFF which is the
hexadecimal equivalent of 255 or in binary (11111111) to port 1 which
in turn causes the 8 LEDs in port 1 to turn ON.

Note that just like the line in the main body of the program, every line of
a C program must end with a semicolon (i.e. ;) except in some special
occasions (to be discussed later)

Alternative version of this program using directive #define.

#include <reg66x.h>
#define ON 0xFF
void main(void)
{

P1 = ON;
}

In the above example the value of “ON” is defined as 0xFF using:

#define ON 0xFF

and the statement in the body of the program is then written as:

P1 = ON;

LEDs and Switches Interfaced to Port 1 and Port 0 of 8051
Microcontroller

University of Portsmouth, Faculty of Technology, Department of Electronic and Computer Engineering
B122L – Principles of Digital Systems

 6

Programming Time Delays

- for various reasons it might be necessary to include some sort of

time delay routine in most of the embedded system programs
- sophisticated and very accurate techniques using timers/counters in

the processor exist to achieve this
- one simple approach (not involving timers) is to let the processor

count for a while before it continues
- this can be achieved using a loop in the program where program

does not do anything useful except incrementing the loop counter:

for(j=0; j<=255; j=j+1)
{

;
}

Once the loop counter reaches the value of 255 program will exit the
loop and continue execution with the first statement following the loop
section

- for a longer delays we can use a nested loop structure, i.e. loop

within the loop:

for(i=0; i<=255; i=i+1)
{

for(j=0; j<=255; j=j+1)
{

;
}

}

Note that with this structure the program counts to 255 x 255.

Indefinite Loops

- embedded system might be required to continuously execute a

section of a program indefinitely
- to achieve this indefinite loop (loop without any exit condition) can

be used
- the statement that performs this is:

for(;;)
{

}

Part of the program to be repeated indefinitely must then be placed in
between the curly brackets after the for(;;) statement.

University of Portsmouth, Faculty of Technology, Department of Electronic and Computer Engineering
B122L – Principles of Digital Systems

 7

Variables in Embedded C

- variables in C program are expected to change within a program
- variables in C may consist of a single letter or a combination of a

number of letters and numbers
- spaces and punctuation are not allowed as part of a variable name
- C is a case sensitive language (therefore I and i are treated as two

separate variables)
- in a C program variables must be declared immediately after the

curly bracket marking the beginning of a function
- to declare a variable, its type must be defined, it provides

information to the compiler of its storage requirement
- some of the more common types supported by C are listed below

Type Size Range
unsigned char 1 byte 0 to 255
(signed) char 1 byte -128 - +127
unsigned int 2 bytes 0 - 65535
(signed) int 2 bytes -32768 - +32767

bit 1 bit 0 or 1
(RAM bit-addressable part of

memory only)
sbit 1 bit 0 or 1

(SFR bit-addressable part of
memory only)

sfr 8 bit RAM addresses 80h-FFh only

- definition of type of a variable in a C program is an important factor
in the efficiency of a program

- depending on the type of a variable the compiler reserves memory
spaces for that variable

- consider the following guidelines when selecting the type of
variables:

 if speed is important and sign is not important, make
every variable unsigned

 unsigned char is the most common type to use in
programming 8051 microcontroller as most registers
in the processors are of size 8-bits (i.e one byte)

University of Portsmouth, Faculty of Technology, Department of Electronic and Computer Engineering
B122L – Principles of Digital Systems

 8

Example 2

Program to indefinitely flash all LEDs on port 1 at a rate of 1 second.

#include <reg66x.h>
void main(void)
{

unsigned char i,j;
for(;;)
{

P1 = 0xFF; /* Turn All LEDs ON */
for(i=0; i<=255; i=i+1)
{

for(j=0; j<=255; j=j+1)
{

;
}

}
P1 = 0x00; /* Turn All LEDs OFF */
for(i=0; i<=255; i=i+1)
{

for(j=0; j<=255; j=j+1)
{

;
}

}
}

}

Note that this program contains two identical time delay routines – first
one keeps ON state on LEDs for app. 1 second and the second one
keeps OFF state on LEDs for the same amount of time. Without those
two delays LEDs would switch ON and OFF so rapidly that the whole
set would constantly appear as not fully turned ON set of LEDs.

Used delay routine is not very accurate so the delay should only
approximately be 1 s.

Note that the first line immediately after the beginning of the main
function is used to declare two variables in the program, I and j:

unsigned char i,j;

University of Portsmouth, Faculty of Technology, Department of Electronic and Computer Engineering
B122L – Principles of Digital Systems

 9

C Functions

- when a part of a program must be repeated more than once, a more

efficient way of implementing is to call the block to be repeated a
name and simple use the name when the block is needed.

- this leads to implementation of C function in the program
- the function (block) must be declared before the main program and

defined, normally immediately after the main program is ended
- rules for function declaration are same as for declaration of main

function

void DELAY (void)

Above function declaration informs the compiler that there will be a
function called DELAY, requiring no parameters and returning no
parameters.
Note the absence of semicolon at the end of function declaration.

- a function is defined in the same way as the main function (an open

curly bracket marks the beginning of the function, variables used
within the function are then declared in the next line before the body
of the function is implemented, the function ends with a closed curly
bracket)

- the name of a function must follow the rules for the name of a
variable - the function name may not have spaces, or any
punctuation

- a use of functions is advisable as functions make programs shorter
and readable, a shorter program also requires less space in the
memory and therefore better efficiency

- function is called in the main program using function name and
appropriate parameters (if any)

Example 3

In this example program from Example 2, to indefinitely flash all LEDs
on port 1 at a rate of 1 second is rewritten using function to generate
time delay.

#include <reg66x.h>
void DELAY(void);
void main(void)
{

for(;;)
{
P1 = 0xFF; /* Turn All LEDs ON */
DELAY(); /* Wait for 1 second */
P1 = 0x00; /* Turn All LEDs OFF */
DELAY();
}

}

void DELAY(void)
{

unsigned char i, j;
for(i=0; i<=255; i=i+1)
{

for(j=0; j<=255; j=j+1)
{
;
}

}
}

University of Portsmouth, Faculty of Technology, Department of Electronic and Computer Engineering
B122L – Principles of Digital Systems

 10

Other Loops in C

Two other loops exist in C language - <do…while> and <while>.
Instructions to generate single loop delay using those two loop
techniques are given below.

i=0;
do
{

i=i+1;
} while(i<=255);

i=0;
while(i<=255)
{

i=i+1;
}

Example 4

Program from Examples 2 and 3 is rewritten and modified so that LEDs
on port 1 flash with 1 s time delay only 10 times.

#include <reg66x.h>
void DELAY(void);
void main(void)
{

unsigned char N;
N=0;
do
{

P1 = 0xFF; /* Turn All LEDs ON */
DELAY(); /* Wait for 1 second */
P1 = 0x00; /* Turn All LEDs OFF */
DELAY();
N=N+1;

} while(N<10);
}

void DELAY(void)
{

unsigned char i,j;
for(i=0; i<=255; i=i+1)
{

for(j=0; j<=255; j=j+1)
{

;
}

}
}

University of Portsmouth, Faculty of Technology, Department of Electronic and Computer Engineering
B122L – Principles of Digital Systems

 11

Making Decisions in the Program

- an important feature of any embedded system is the ability to test

the value of any parameter in the system and based on the outcome
of this test take an appropriate action

- the parameter tested must be a program variable and C construct
usually employed to perform test is the <if> statement

- effect of this statement is illustrated on the flowchart below

Condition
?

Action B Action A

TrueFalse

- C instructions to achieve this action are

if(condition)
{

Perform Action A
}
else
{

Perform Action B
}

? Operator

- in the C program operator <?> can be used as a short hand version

of the ‘if’ statement discussed above
- flowchart and line of code provided below explain the effect of using

this operator

B>C
?

A=X A=Y

NoYes

A = (B > C) ? X : Y;

In other words “if B is greater than C then let A=X otherwise let A=Y”.

University of Portsmouth, Faculty of Technology, Department of Electronic and Computer Engineering
B122L – Principles of Digital Systems

 12

Example 5

Program to operate the LEDs attached to port 1 as a BCD (Binary
Coded Decimal) up counter. A BCD up counter is one, which counts in
binary from 0 to 9 and then repeats from 0 again.

#include <reg66x.h>
void DELAY(void);
void main(void)
{

unsigned char N=0;
for(;;)
{

P1 = N; /* Turn All LEDs ON */
DELAY(); /* Wait for a while */
N=N+1;
if(N>9)
{

N=0;
}

}
}

void DELAY(void)
{

unsigned char i,j;
for(i=0; i<=255; i=i+1)
{

for(j=0; j<=255; j=j+1)
{

;
}

}
}

Short Hand Notations

Statement Short hand Explanation
A=A+1 A++ Increment A
A=A-1 A-- Decrement A
A=A+B A+=B Let A=A+B
A=A-B A-=B Let A=A-B
A=A*B A*=B A=A*B
A=A/B A/=B A=A/B

Logical and Bit-wise Operations

Operation In Assembly In C Example in C
NOT CPL A ~ A=~A;
AND ANL A,#DATA & A= A & DATA
OR ORL A,#DATA ¦ A= A ¦ DATA
EX-OR XRL A,#DATA ^ A= A ^ DATA
Shift Right by n-bits RRA >> A=A>>n
Shift Left by n-bits RLA << A=A<<n

The bit-wise AND may be used to perform a bit mask operation. This
operation may be used to isolate part of a string of bits, or to determine
whether a particular bit is 1 or 0. For example, to determine whether the
third bit in the 4 bit patter is 1, a bitwise AND is applied to it along with
another bit pattern containing 1 in the third bit, and 0 in all other bits,
Given a bit pattern 0101 we can bit-wise AND it with 0010. Result is 0.
We therefore know that the third bit in the original pattern was 0. Using
bit-wise AND in this manner is called bit masking. The 0 values in the
mask pattern 0010 mask the bits that are not of concern, in this case.

University of Portsmouth, Faculty of Technology, Department of Electronic and Computer Engineering
B122L – Principles of Digital Systems

 13

Arrays

- arrays are used when it is necessary to store larger number of data

of same type into consecutive memory locations where they can
easily be accessed by the program at some later stage

- as any other data in the program array must be declared at the
beginning of the main program

- upon reading this declaration compiler will reserve appropriate
number of memory locations to store the array elements

unsigned char T[20];

This array declaration will cause the compiler to reserve 20 consecutive
memory locations and call it T. “T” is now the name of that particular
array. Note that number inside the square brackets indicate the size of
declared array.

Example 6

Two versions of the program that reads the state of the switches on port
0 and operates the LEDs on port 1 accordingly. For example if switch
S0 is pressed, program will turn LED0 ON, if S2 and S3 are pressed,
then LED 2 and 3 must turn ON and so on.

// version 1
#include <reg66x.h>
void main(void)
{

for(;;)
{

P1=P0;
}

}

// version 2
#include <reg66x.h>
#define SWITCHES P0
#define LEDS P1
void main(void)
{

for(;;)
{

LEDS = SWITCHES;
}

}

University of Portsmouth, Faculty of Technology, Department of Electronic and Computer Engineering
B122L – Principles of Digital Systems

 14

Example 7

This program monitors switch S0 attached to the pin 0 of port 0. When
this switch is pressed, it flashes the single LED attached to pin 0 of port
1 ten times. Previously discussed bit masking technique is used to test
the value of switch S0.

#include <reg66x.h>
#define ON 0x01
#define OFF 0x00
#define mask 0x01 // 00000001

void DELAY(void);
void main(void)
{
 unsigned char S0;
 unsigned char N;

 for(;;)
 {
 S0=P0&mask; // masking bits
 while(S0) // wait for key press
 {

for(N=0;N<10;N++)
 {
 P1=ON;
 DELAY();
 P1=OFF;
 DELAY();
 }
 S0=P0&mask;
 }
 }
}

void DELAY(void)
{
 unsigned char i,j;
 for(i=0; i<=255; i=i+1)
 {
 for(j=0; j<=255; j=j+1)
 {
 ;
 }
 }
}

Another way to access a single pin on any port of 8051 is to make use
of special sbit data type. This data type provides access to bit-
addressable SFRs and bit-addressable memory space within the
processor.

Line:

sbit S0=P0^0;

creates an sbit type variable S0 that points to pin 0 of port 0.

University of Portsmouth, Faculty of Technology, Department of Electronic and Computer Engineering
B122L – Principles of Digital Systems

 15

Using bit addressing ability of 8051 C compiler, alternative version of
the program can be written:

#include <reg66x.h>
#define ON 0xFF
#define OFF 0x00

sbit S0 = P0^0;

void DELAY(void);
void main(void)
{
 unsigned char N;

 for(;;)
 {
 while(S0)
 {
 for(N=0;N<10;N++)
 {
 P1=ON;
 DELAY();
 P1=OFF;
 DELAY();
 }
 }
 }
}

Note that because there is no way to indirectly address registers in the
8051, addresses for sbit type variables must be declared outside of any
functions within the code.

University of Portsmouth, Faculty of Technology, Department of Electronic and Computer Engineering
B122L – Principles of Digital Systems

 1

University of Portsmouth
Faculty of Technology
Department of Electronic and Computer Engineering

Module: Principles of Digital Systems
Module Code: B122L
Module Topic: Microcontroller Applications
Lecturer: Branislav Vuksanovic

Lecture Notes:
Programming Timers on 8051

The purpose of this handout is to explain how to use the internal 8051
timers to generate time delays.

Content

Uses of Timers & Counters .. 2
8051 Timers Operation .. 2
Timer Registers .. 2
TMOD SFR .. 3
13-bit Time Mode (mode 0) .. 4
16-bit Time Mode (mode 1) .. 4
8-bit Time Mode (mode 2) .. 4
Split Timer Mode (mode 3) .. 5
TCON SFR ... 5
Timer Delay and Timer Reload Value 6
Example 1 .. 7
Example 2 .. 7
Example 3 .. 8
Example 4 .. 8
Alternative Technique for Timers Loading 9
Example 5 .. 9
Example 6 .. 9

University of Portsmouth, Faculty of Technology, Department of Electronic and Computer Engineering
B122L – Principles of Digital Systems

 2

Uses of Timers & Counters
The 8051 is equipped with two timers, both of which may be controlled,
and configured individually. The 8051 timers have three general
functions:

1) Keeping time and/or calculating the amount of time between
events (interval timing mode)

2) Counting the events themselves (event counting mode)
3) Generating baud rates for the serial port

The first two uses will be discussed in this handout while the use of
timers for baud rate generation will be considered in the handout
related to serial ports.

8051 Timers Operation
A timer counts up when incremented by the microcontroller or some
external source. When the timer reaches the maximum value and is
subsequently incremented, it will reset- or overflow -back to 0. This will
also set the timer overflow flag in one of timer SFRs.
When a timer is in interval timer mode (as opposed to event counter
mode) and correctly configured, it will increment by 1 every machine
cycle. If the machine cycle consists of 6 crystal pulses a timer running
on the microcontroller with 11.0592 MHz crystal will be incremented
1843200 times per second since:

611.0592 10 1843200
6
×

=

This means that if the timer has counted from 0 to 100000 a 0.05425
seconds or 54.25 milliseconds have passed since:

100000 0.05425
1843200

=

A reverse calculation can also be made, so if for example, we want to
know how many times timer needs to increment during 20 milliseconds
we need to perform following calculation:

0.02 1843200=36864×

It is therefore necessary to have exactly 36864 timer increments to
achieve a time period of 20 milliseconds. This is actually a way to
measure time using timers on the microcontroller – by counting the
number of timer increments during the measured time period. All that is
now needed is to learn how to control and initialise timers to provide the
needed information. This is done through the proper setting of a
number of SFRs related to timer functions and explained in following
sections of this document.

Timer Registers
Two 8051 timers are called Timer0 and Timer1 and they share two
SFRs (TMOD and TCON) which control the timers, and each timer also
has two SFRs dedicated solely to itself (TH0/TL0 and TH1/TL1).
Timer registers names; brief descriptions and addresses are given in
the table below.
Timer 0 has two SFRs dedicated exclusively to itself: TH0 and TL0.
Those are high and low bytes of the timer. When Timer 0 has a value of
0, both TH0 and TL0 will contain 0. When Timer 0 has the value of for
example 1000, TH0 will hold the high byte of the value (3 decimal) and
TL0 will contain the low byte of the value (232 decimal). The final value
of timer register is obtained by multiplying the high byte value by 256
and adding the low byte value to this value:

TH0 256 TL0 1000
3 256 232 1000

× + =
× + =

Timer 1 is identical to Timer 0, but it’s SFRs are TH1 and TL1.

University of Portsmouth, Faculty of Technology, Department of Electronic and Computer Engineering
B122L – Principles of Digital Systems

 3

SFR Name Description SFR Address

TH0 Timer 0 High Byte 8Ch

TL0 Timer 0 Low Byte 8Ah

TH1 Timer 1 High Byte 8Dh

TL1 Timer 1 Low Byte 8Bh

TCON Timer Control 88h

TMOD Timer Mode 89h

TMOD SFR

TMOD SFR and its individual bits

The TMOD SFR is used to control the mode of operation of both timers.
Each bit of the SFR gives the microcontroller specific information
concerning how to run a timer. The high four bits (bits 4 through 7)
relate to Timer 1 whereas the low four bits (bits 0 through 3) perform
the same functions, but for timer 0.
The individual bits of TMOD and their functions are detailed in the table
below.

Bit Name Explanation of Function

7 GATE 1 When this bit is set the timer will only run
when INT1 (P3.3) is high.
When this bit is clear the timer will run
regardless of the state of INT1.

6 C/T1 When this bit is set the timer will count events
on T1 (P3.5). When this bit is clear the timer
will be incremented every machine cycle.

5 T1M1 Timer mode bit (see table below)

4 T1M0 Timer mode bit (see table below)

3 GATE 0 When this bit is set the timer will only run
when INT0 (P3.2) is high.
When this bit is clear the timer will run
regardless of the state of INT1.

2 C/T0 When this bit is set the timer will count events
on T0 (P3.4). When this bit is clear the timer
will be incremented every machine cycle.

1 T0M1 Timer mode bit (see table below)

0 T0M0 Timer mode bit (see table below)

The modes of operation determined with four bits from the TMOD
register are:

TxM1 TxM0 Timer Mode Mode Description

0 0 0 13-bit Timer

0 1 1 16-bit Timer

1 0 2 8-bit auto-reload

1 1 3 Split timer mode

University of Portsmouth, Faculty of Technology, Department of Electronic and Computer Engineering
B122L – Principles of Digital Systems

 4

13-bit Time Mode (mode 0)
Timer mode "0" is a 13-bit timer. This mode is used to maintain
compatability of 8051 with the older generation microcontroller, the
8048. Generally the 13-bit timer mode is not used in new development.
When the timer is in 13-bit mode, TLx will count from 0 to 31. When TLx
is incremented from 31, it will "reset" to 0 and increment THx. Thus,
effectively, only 13 bits of the two timer bytes are being used: bits 0-4 of
TLx and bits 0-7 of THx. This also means, in essence, the timer can
only contain 8192 values. If you set a 13-bit timer to 0, it will overflow
back to zero 8192 machine cycles later.

16-bit Time Mode (mode 1)
Timer mode "1" is a 16-bit timer. This is a very commonly used mode. It
functions just like 13-bit mode except that all 16 bits are used.
TLx is incremented from 0 to 255. When TLx is incremented from 255,
it resets to 0 and causes THx to be incremented by 1. Since this is a full
16-bit timer, the timer may contain up to 65536 distinct values. If you
set a 16-bit timer to 0, it will overflow back to 0 after 65,536 machine
cycles.

8-bit Time Mode (mode 2)
Timer mode "2" is an 8-bit auto-reload mode. In this mode THx holds
the "reload value" and TLx is the timer itself. Thus, TLx starts counting
up. When TLx reaches 255 and is subsequently incremented, instead
of resetting to 0 (as in the case of modes 0 and 1), it will be reset to the
value stored in THx.
In mode 2 THx is always set to a known value and TLx is the SFR that
is constantly incremented.
In this mode microcontroller hardware takes care of checking for the
timer overfow and reloading of the timer, thus saving some of the
processing time.
The auto-reload mode is very commonly used for establishing a baud
rate necessary for the serial communications.

University of Portsmouth, Faculty of Technology, Department of Electronic and Computer Engineering
B122L – Principles of Digital Systems

 5

Split Timer Mode (mode 3)
Timer mode "3" is a split-timer mode. When Timer 0 is placed in mode
3, it essentially becomes two separate 8-bit timers. Timer 0 is TL0 and
Timer 1 is TH0. Both timers count from 0 to 255 and overflow back to 0.
All the bits that are related to Timer 1 will now be tied to TH0.
While Timer 0 is in split mode, the real Timer 1 (i.e. TH1 and TL1) can
be put into modes 0, 1 or 2 normally - however, you may not start or
stop the real timer 1 since the bits that do that are now linked to TH0.
The real timer 1, in this case, will be incremented every machine cycle
no matter what.
This mode might be used if there is a need to have two separate timers
and, additionally, a baud rate generator. In such case real Timer 1 can
be used as a baud rate generator and TH0/TL0 can be used as two
separate timers.

TCON SFR
Another register used for the timers control is TCON register.

TCON SFR and its individual bits

It is worth noting here that only upper 4 bits are related to timers
operation while the other 4 bits of this register are related to interrupts
and will be explained in the handout related to this topic. Therefore.
Only the upper 4 bits of this register are listed and explained in the
table below. TCON is a “bit-addressable” register; hence an extra
column in the table has been added.

University of Portsmouth, Faculty of Technology, Department of Electronic and Computer Engineering
B122L – Principles of Digital Systems

 6

Bit Name Bit Address Explanation of Function

7 TF1 8Fh Timer 1 Overflow flag

6 TR1 8Eh Timer 1 Run

5 TF0 8Dh Timer 0 Overflow flag

4 TR0 8Ch Timer 0 Run

Overflow flags TF1 and TF0 are set by the corresponding timers when
they overflow. Timer Run bits are used by the program to turn the timer
on (when this bit is set to 1) or off (when the bit is cleared).

The benefit of “bit-addressability” of this register is now clear. This has
the advantage of setting the high bit of TCON without changing the
value of any of the other bits of the SFR. To start or stop a timer no
modification of any other value in TCON is necessary.

Once the modes of the operation of the timers are clear and functions
of the individual bits of timer initialising registers are known, writing
programs to use timers is an easy task.

Procedure of calculating the reload values for timers in order to achieve
specific timing delays is summarised in the next paragraph and a
number of simple examples using timers for timing or counting external
events is also given on the next few pages.

Timer Delay and Timer Reload Value

×Timer Delay = Delay Value Timer Clock Cycle Duration

Delay Value = how many counts before timer overflows , i.e.

Delay Value = Maximum Register Count - Timer Reload Value

number of crystal pulses per machine cycle=
crystal frequency

Timer Clock Cycle Duration

⎧
⎨
⎩

6
8

for P89C664 model
number of crystal pulses per machine cycle =

for basic 80C51 model

⎧
⎨
⎩

for mode 1
Maximum Register Count =

for mode 2
65536
256

Timer Reload Value =???

University of Portsmouth, Faculty of Technology, Department of Electronic and Computer Engineering
B122L – Principles of Digital Systems

 7

Example 1

Calculation of Timer 0 reload value needed to achieve timer delay of 20
ms. Oscillator frequency is 11.0592 MHz.

Delay Value = Timer Delay / Timer Clock Cycle Duration

 =

6

3

100592.11
6
1020

×

× −

 = 36864 (must be rounded to the nearest integer)

Timer Reload Value = Maximum Register Count - Delay Value

 = 65535 – 36864

 = 28671

 = 0x6FFF

so Timer 0 is loaded with:

TH0 = 0x6F;

TL0 = 0xFF;

Example 2

Function to generate 100 μs delay using timer 0.

Procedure is:

 Initialise TMOD register
 Initialise TL0 and TH0
 Start the Timer
 Monitor TF0 until it is set

Delay: MOV TMOD,#01H ; initialise
TMOD

 MOV TL0,#47H ; initialise TL0
 MOV TL0,#FFH ; initialise TH0
 SETB TR0 ; start timer

Wait: JNB TF0,Wait ; wait for TF0
 CLR TR0 ; stop timer
 CLR TF0 ; clear TF0

RET

Delay Value =

6

3

100592.11
6
10100

×

× −

= 184

Timer Reload Value = 65535 – 184 = 65351 = 0xFF47

so Timer 0 is loaded with:

TH0 = 0x6F; TL0 = 0xFF;

University of Portsmouth, Faculty of Technology, Department of Electronic and Computer Engineering
B122L – Principles of Digital Systems

 8

Example 3

C version of the function from Example 2.

void Delay(void)
{
 TMOD = 0x01;
 TL0 = 0x47;
 TH0 = 0xFF;
 TR0 = 1;
 while(!TF0);
 TR0 = 0;
 TF0 = 0;
}

Example 4

Program to toggle pin 7 on Port 1 with a time delay of 20 ms.

#include <reg66x.h>

#define off 0
#define on 1

sbit pin7 = P1^7; // label pin7 is port 1 pin

7

main()
{

TMOD = 0x01;
// timer 0 mode 1,

// TH0TL0 = 16 bit register

 while(1)

// keep repeating the following section
 {
 pin7 = on;

// pin 7 to 5 volts, i.e. logic 1

 // use timer 0 to generate delay
 TH0 = 0x6F; // hex 6F into TH0
 TL0 = 0xFF; // hex FF into TL0
 TR0 = on; // start timer
 while(!TF0);

// wait here until TF0 = 1
 TR0 = off; // stop timer
 TF0 = off; // clear overflow flag

pin7 = off;
// pin 7 to 0 v0lts, i.e. logic 0

 // repeat timer delay
 TH0 = 0x6F; // hex 6F into TH0
 TL0 = 0xFF; // hex FF into TL0
 TR0 = on; // start timer
 while(!TF0);

// wait here until TF0 = 1
 TR0 = off; // stop timer
 TF0 = off; // clear overflow flag
 }
}

University of Portsmouth, Faculty of Technology, Department of Electronic and Computer Engineering
B122L – Principles of Digital Systems

 9

Alternative Technique for Timers Loading

Example 5

Load the timer 0 in order to produce 1 kHz square wave (i.e. cycle time
of 1000 μs and delay time 500 μs). Oscillator frequency is 11.0592
MHz.

Delay Value =

6

6

100592.11
6
10500

×

× −

 = 922

Timer Reload Value = 65535 – 922 = 64614 = 0xFC66

so Timer 0 is loaded with: TH0 = 0xFC; TL0 = 0x66

Alternatively if we use: TH0 = ~(922/256);

result of integer division 922/256 = 3 will be byte complemented to
0xFC and stored in TH0

Second line to fill up lower timer 0 register: TL0 = -(922%256)

will negate reminder of division 922/256 and store the result in TL0

i.e. 922%256 = 154
 -(922%256) = 256-154 = 102 = 0x66

Example 6

C program to generate 1 kHz square wave from figure below. Square
wave should be generated on pin 7 of port 1. Functions are used to
generate two delays needed in the program. (delay = 200 μs)

4 x delay delay

ON

OFF

// header file containing SFR adresses
#include<reg66x.h>

// to make program more readable:

// define ON and OFF states
#define on 1
#define off 0

// give a name to output pin
sbit pwm = P1^7;

// long and short delay functions
void delay_on();
void delay_off();

University of Portsmouth, Faculty of Technology, Department of Electronic and Computer Engineering
B122L – Principles of Digital Systems

 10

main()
{
 TMOD = 0x01;

// initialise TMOD for Timer 0 in mode 1

while(1) // repeat this
 {
 pwm = on; // output pin high
 delay_on(); // 800 us delay
 pwm = off; // output pin low
 delay_off(); // 200 us delay
 }
}

// 800 us delay function
void delay_on()
{
 // loading Timer 0 for longer delay
 TH0 = ~(1475/256);

TL0 = -(1475%256);
 TR0 = on; // turn the Timer 0 ON
 while(!TF0); // wait for timer overflow
 TR0 = off; // switch the Timer 0 off
 TF0 = off; // clear the overflow flag
}

// 200 us delay function
void delay_off()
{
 // loading Timer 0 for shorter delay
 TH0 = ~(369/256);

TL0 = -(369%256);
 TR0 = on;
 while(!TF0);
 TR0 = off;
 TF0 = off;
}

University of Portsmouth, Faculty of Technology, Department of Electronic and Computer Engineering
B122L – Principles of Digital Systems

 1

University of Portsmouth
Faculty of Technology
Department of Electronic and Computer Engineering

Module: Principles of Digital Systems
Module Code: B122L
Module Topic: Microcontroller Applications
Lecturer: Branislav Vuksanovic

Lecture Notes:
Interrupts on 8051

The purpose of this handout is to explain how to handle interrupts on
the 8051 series of microcontrollers.

Content
Interrupts .. 2
Interrupt Events .. 2
Enabling Interrupts ... 3
Interrupt Priorities ... 3
Interrupt Handling .. 4
Timer Interrupts .. 5
External Interrupts .. 5
Serial Interrupts .. 5
Example 1 – Timer Interrupt... 6
Example 2 – External Interrupt... 6

University of Portsmouth, Faculty of Technology, Department of Electronic and Computer Engineering
B122L – Principles of Digital Systems

 2

Interrupts
As the name implies, an interrupt is some event which interrupts
normal program execution.
Program flow is always sequential, being altered only by those
instructions which cause program flow to deviate in some way.
However, interrupts provide a mechanism to "put on hold" the normal
program flow, execute a subroutine (interrupt service routine or interrupt
handler), and then resume normal program flow. ISR (interrupt service
routine) is only executed when a certain event (interrupt) occurs. The
event may be one of the timers "overflowing," receiving a character via
the serial port, transmitting a character via the serial port, or one of two
"external events." The 8051 may be configured so that when any of
these events occur the main program is temporarily suspended and
control passed to a special section of code which would execute some
function related to the event that occurred. Once complete, control
would be returned to the original program so that the main program
never even knows it was interrupted.
The ability to interrupt normal program execution when certain events
occur makes it much easier and much more efficient to handle certain
conditions. Without interrupts a manual check in the main program
would have to be performed to establish whether the timers had
overflown, whether another character has been received via the serial
port, or if some external event had occurred. Besides making the main
program longer and more complicated to read and understand, more
importantly, such a situation would make program inefficient since
"instruction cycles" would be spent checking for events that usually
don’t happen or happen very infrequently during the program execution.

It was shown in the previous handout how timer flag needs to be
checked to detect timer overflow when generating accurate delay in the
program. This isn’t necessary. Interrupts let us forget about checking for
the condition. The microcontroller itself will check for the condition
automatically and when the condition is met will jump to a subroutine
(called an interrupt handler), execute the code, then return.

Interrupt Events
The 8051 family of microcontrollers can be configured to respond to
interrupts caused by the following events:

 Timer 0 Overflow
 Timer 1 Overflow
 Reception/Transmission of Serial Character
 External Event 0
 External Event 1

So when, for example Timer 0 overflows or when a character is
successfully sent or received via serial port, the appropriate interrupt
handler routines are called and executed. It is necessary to distinguish
between various interrupts and to respond to them by executing
different ISR. This is accomplished by jumping to a fixed address when
a given interrupt occurs. These addresses are usually placed at the
bottom of the memory map, in the area of memory so called interrupt
vector table (IVT).

Interrupt Name ISR Address

External 0 IE0 0003h

Timer 0 TF0 000Bh

External 1 IE1 0013h

Timer 1 TF1 001Bh

Serial RI/TI 0023h

From the above IVT it can be seen that whenever Timer 0 overflows
(i.e., the TF0 bit is set), the main program will be temporarily suspended
and control will jump to 000BH. It is of course necessary to have a code
at address 000BH that handles the situation of Timer 0 overflowing.

University of Portsmouth, Faculty of Technology, Department of Electronic and Computer Engineering
B122L – Principles of Digital Systems

 3

Enabling Interrupts
By default at power up, all interrupts are disabled. Therefore even if, for
example, the TF0 bit is set, the 8051 will not execute the interrupt. User
program must specifically tell the 8051 that it wishes to enable
interrupts and specifically which interrupts it wishes to enable.
Enabling and disabling of the interrupts is done by modifying the IE
SFR (Interrupt Enable) (A8h):

IE SFR and its individual bits

Bit Name Bit Address Explanation of Function

7 EA AFh Global Interrupt Enable/Disable.

6 - AEh Undefined

5 - ADh Undefined

4 ES ACh Enable Serial Interrupt

3 ET1 ABh Enable Timer 1 Interrupt

2 EX1 AAh Enable External 1 Interrupt

1 ET0 A9h Enable Timer 0 Interrupt

0 EX0 A8h Enable External 1 Interrupt

Each of the 8051’s interrupts has its own bit in the IE SFR. To enable a
given interrupt a corresponding bit needs to be set. To enable Timer 1

Interrupt a bit 3 needs to be set by executing one of two instructions
written below:

IE = 0x08; or ET1 = 1;

Once Timer 1 Interrupt is enabled, whenever the TF1 bit is set, the
8051 will automatically put "on hold" the main program and execute the
Timer 1 Interrupt Handler at address 001Bh.
However, before Timer 1 Interrupt (or any other interrupt) is truly
enabled, bit 7 of IE must also be set. Bit 7, the Global Interrupt
Enable/Disable, enables or disables all interrupts simultaneously. If bit 7
is cleared then no interrupts will occur, even if all the other bits of IE are
set. Setting bit 7 will enable all the interrupts that have been selected by
setting other bits in IE. This is useful in program executing time-critical
code where it might be needed to execute code from start to finish
without any interrupt getting in the way. To accomplish this bit 7 of IE
can simply be cleared (EA = 0;) and then set after the time-critical code
is done. So to fully enable the Timer 1 Interrupt the most common
approach is to execute the following two instructions:

ET1 = 1;
EA = 1;

Alternatively, instruction:

IE = 0x88;

will have the same effect.

Thereafter, the Timer 1 Interrupt Handler at 01Bh will automatically be
called whenever the TF1 bit is set (upon Timer 1 overflow).

Interrupt Priorities
When checking for interrupt conditions, 8051 always checks according
to predetermined sequence:

University of Portsmouth, Faculty of Technology, Department of Electronic and Computer Engineering
B122L – Principles of Digital Systems

 4

1. External 0 Interrupt
2. Timer 0 Interrupt
3. External 1 Interrupt
4. Timer 1 Interrupt
5. Serial Interrupt

This also means that if a Serial Interrupt occurs at the exact same
instant that an External 0 Interrupt occurs, the External 0 Interrupt will
be serviced first and the Serial Interrupt will be serviced once the
External 0 Interrupt has completed.

This priority order in servicing the interrupts on 8051 can be altered.
Custom defined priority order offers two levels of interrupt priority: high
and low.
If Timer 1 and Serial Interrupt are enabled in the program Timer 1
Interrupt will have a higher priority than the Serial Interrupt, i.e. if two
interrupts occur at the same time Timer 1 Interrupt will be serviced first.
To change this high priority can be assigned to a Serial Interrupt and
low priority to a Timer 1 Interrupt. In this interrupt priority scheme, even
if Timer 1 Interrupt is already executing the serial interrupt itself can
interrupt the Timer 1 Interrupt. When the serial interrupt ISR is
complete, control passes back to Timer 1 Interrupt and finally back to
the main program.
Interrupt priorities are controlled by the IP SFR (B8h).

IP SFR and its individual bits

Interrupt can be assigned high priority by setting the corresponding bit
in this register. Leaving the bit clear, interrupt is assigned the low
priority.

Bit Name Bit Address Explanation of Function

7 - - Undefined

6 - - Undefined

5 - - Undefined

4 PS BCh Serial Interrupt Priority

3 PT1 BBh Timer 1 Interrupt Priority

2 PX1 BAh External 1 Interrupt Priority

1 PT0 B9h Timer 0 Interrupt Priority

0 PX0 B8h External 1 Interrupt Priority

When considering interrupt priorities, the following rules apply:
- Nothing can interrupt a high-priority interrupt-not even another high

priority interrupt.
- A high-priority interrupt may interrupt a low-priority interrupt.
- A low-priority interrupt may only occur if no other interrupt is already

executing.
- If two interrupts occur at the same time, the interrupt with higher

priority will execute first. If both interrupts are of the same priority the
interrupt which is serviced first by polling sequence will be executed
first.

Interrupt Handling
When an interrupt is triggered, the following actions are taken
automatically by the microcontroller:

 instruction currently being executed is finished
 the current content of the Program Counter is stored

on the stack, low byte first

University of Portsmouth, Faculty of Technology, Department of Electronic and Computer Engineering
B122L – Principles of Digital Systems

 5

 in the case of Timer and External interrupts, the
corresponding interrupt flag is cleared.

 ISR address is fetched from IVT (interrupt vector
table) and copied over into the Program Counter

 corresponding ISR is executed until the RETI
instruction (Return from Interrupt instruction)

An interrupt ends when your program executes the RETI (Return from
Interrupt) instruction. When the RETI instruction is executed the
following actions are taken by the microcontroller:

 two bytes are popped off the stack into the Program
Counter to restore normal program execution.

 interrupt status is restored to its pre-interrupt status.

Timer Interrupts
Timer interrupts occur as a result of Timer 0 or Timer 1 overflow. This
sets the corresponding timer flag in TCON register. Flag is cleared
automatically by the hardware, so there is no need for the flag clearing
instruction in the ISR.

External Interrupts
There is one not so obvious detail, which requires an additional
explanation, and it concerns the external interrupts. Namely, if bits IT0
and IT1 (in register TCON) are set, program will be interrupted on
change of logic on interrupt pins (P3.2 for External Interrupt 0 and P3.3
for External Interrupt 1) from 1 to 0, i.e. on falling edge of the impulse. If
these two bits are cleared, same signal will trigger an interrupt, but in
this case it will be continually executed as long as the state on interrupt
pins is low.

Last two unexplained bits of TCON SFR are interrupt flags IE1 and IE0.
Similarly to timer flags those two flags are set when corresponding
external interrupt occurs. They are cleared by hardware when the CPU
vectors to the ISR if the interrupt is transition-activated. If the interrupt is
level activated, then IEx flag has to be cleared by the user software

Serial Interrupts
Serial Interrupts are slightly different than the rest of the interrupts. This
is due to the fact that there are two interrupt flags: RI and TI (bits 0 and
1 from SCON register). If either flag is set, a serial interrupt is triggered.
RI bit is set when a byte is received by the serial port and the TI bit is
set when a byte has been sent. This means that when serial interrupt
occurs, it may have been triggered because the RI flag was set or
because the TI flag was set-or because both flags were set. Thus,
interrupt routine must check the status of these flags to determine what
action is appropriate. Also, since the 8051 does not automatically clear
the RI and TI flags ISR must clear these bits.

University of Portsmouth, Faculty of Technology, Department of Electronic and Computer Engineering
B122L – Principles of Digital Systems

 6

Example 1 – Timer Interrupt

#include <reg66x.h>

sbit pin7 = P1^7;

void something() interrupt 1 using 2
{
 pin7 = ~pin7; // complement pin 7
}

main()
{
 while(1)

{
 TMOD = 0x02;

// put timer 0 in mode 2
 TL0 = -184;
 TH0 = -184; // reload value
 TR0 = 1; // start timer 0
 EA = 1; // global INT enable
 ET0 = 1; // timer 0 INT enable
 for(;;); // wait for INT
 }
}

Example 2 – External Interrupt

#include <reg66x.h>

sbit pin7 = P1^7;
sbit pin6 = P1^6;

void something() interrupt 2 using 2
{
 unsigned int j;
 for(j = 1; j <= 10; j++) // delay
 pin7 = ~pin7; // complement pin 7
}

main()
{
 EA = 1; // global interrupt enable

EX1 = 1; // enable P3.3 active low INT
IT1 = 1; // = 0 level triggered;

// = 1 edge triggered
 while(1)
 {
 unsigned int j;
 for(j = 1; j <=10; j++)
 pin6 = ~pin6;
 }
}

University of Portsmouth, Faculty of Technology, Department of Electronic and Computer Engineering
B122L – Principles of Digital Systems

 1

University of Portsmouth
Faculty of Technology
Department of Electronic and Computer Engineering

Module: Principles of Digital Systems
Module Code: B122L
Module Topic: Microcontroller Applications
Lecturer: Branislav Vuksanovic

Lecture Notes:
Serial Port Operation on 8051

Serial communication is often used either to control or to receive data
from an embedded microprocessor. Serial communication is a form of
I/O in which the bits of a byte begin transferred appear one after the
other in a timed sequence on a single wire. Serial communication has
become the standard for intercomputer communication. In this handout
the operation of the serial port on the 8051 series of microcontroller is
explained.

Content
Setting the Serial Port Mode ... 2
Setting the Serial Port Baud Rate ... 3
Writing to the Serial Port ... 4
Reading the Serial Port ... 5
Example .. 5

University of Portsmouth, Faculty of Technology, Department of Electronic and Computer Engineering
B122L – Principles of Digital Systems

 2

One of the 8051’s features is its integrated UART, otherwise known as
a serial port. It is very easy way to read and write values to the serial
port. If it were not for the integrated serial port, writing a byte to a serial
line would be a rather tedious process requiring turning on and off one
of the I/O lines in rapid succession to properly "clock out" each
individual bit, including start bits, stop bits, and parity bits.
However, on 8051 this is not necessary. Instead, what is needed is to
configure the serial port’s operation mode and baud rate. Once this is
configured, writing to an appropriate SFR will write a value to the serial
port or reading the same SFR will read a value from the serial port. The
8051 will automatically signal when it has finished sending the
character written to its SFR and will also signal when it has received a
byte so that the program can process it further. Programmer does not
have to worry about transmission at the bit level, which saves, quite a
bit of coding and processing time.

Setting the Serial Port Mode
The first thing to do when using the 8051’s integrated serial port is to
configure it. This informs the 8051 of how many data bits are to be
transmitted or received, the baud rate to be used, and how the baud
rate will be determined. Serial Control Register (SCON) is the SFR
used for this configuration. Bits of this register are listed and their
functions explained in the tablebelow.

SCON SFR and its individual bits

Bit Name Explanation of Function

7 SM0 Serial port mode bit 0

6 SM1 Serial port mode bit 1. Explained later.

5 SM2 Mutliprocessor Communications Enable

4 REN Receiver Enable. This bit must be set in order
to receive characters.

3 TB8 Transmit bit 8. The 9th bit to transmit in mode
2 and 3.

2 RB8 Receive bit 8. The 9th bit received in mode 2
and 3.

1 TI Transmit Flag. Set when a byte has been
completely transmitted.

0 RI Receive Flag. Set when a byte has been
completely received.

Additionally, it is necessary to define the function of SM0 and SM1 by
an additional table:

SM0 SM1 Serial Mode Explanation Baud Rate

0 0 0 8-bit Shift Register Oscillator / 12

0 1 1 8-bit UART Set by Timer 1 (*)

1 0 2 9-bit UART Oscillator / 32 (*)

1 1 3 9-bit UART Set by Timer 1 (*)

Note: The baud rate indicated in this table is doubled if PCON.7 (SMOD) is set.

The first four bits (bits 4 through 7) are configuration bits.

University of Portsmouth, Faculty of Technology, Department of Electronic and Computer Engineering
B122L – Principles of Digital Systems

 3

Bits SM0 and SM1 set the serial mode to a value between 0 and 3,
inclusive. The four modes are defined in the chart immediately above.
Selecting the Serial Mode selects the mode of operation (8-bit/9-bit,
UART or Shift Register) and also determines how the baud rate will be
calculated. In modes 0 and 2 the baud rate is fixed based on the
oscillator’s frequency. In modes 1 and 3 the baud rate is variable based
on how often Timer 1 overflows.

The next bit, SM2, is a flag for "Multiprocessor communication".
Generally, whenever a byte has been received the 8051 will set the "RI"
(Receive Interrupt) flag. This lets the program know that a byte has
been received and that it needs to be processed. However, when SM2
is set the "RI" flag will only be triggered if the 9th bit received was a "1".
That is to say, if SM2 is set and a byte is received whose 9th bit is
clear, the RI flag will never be set. This can be useful in certain
advanced serial applications. For our applications it is safe to say that
this bit needs to be cleared so that the flag is set upon reception of any
character.

The next bit, REN, is "Receiver Enable." This bit is very straightforward:
To receive data via the serial port, this bit needs to be set.

The last four bits (bits 0 through 3) are operational bits. They are used
when actually sending and receiving data, i.e. they are not used to
configure the serial port.

The TB8 bit is used in modes 2 and 3. In modes 2 and 3, a total of nine
data bits are transmitted. The first 8 data bits are the 8 bits of the main
value, and the ninth bit is taken from TB8. If TB8 is set and a value is
written to the serial port, the data’s bits will be written to the serial line
followed by a "set" ninth bit. If TB8 is clear the ninth bit will be "clear."
The RB8 also operates in modes 2 and 3 and functions essentially the
same way as TB8, but on the reception side. When a byte is received in
modes 2 or 3, a total of nine bits are received. In this case, the first
eight bits received are the data of the serial byte received and the value
of the ninth bit received will be placed in RB8.

TI means "Transmit Interrupt." When a program writes a value to the
serial port, a certain amount of time will pass before the individual bits
of the byte are "clocked out" the serial port. If the program were to write
another byte to the serial port before the first byte was completely
output, the data being sent would be overwritten and therefore lost for
transmission. Thus, the 8051 lets the program know that it has "clocked
out" the last byte by setting the TI bit. When the TI bit is set, the
program may assume that the serial port is "free" and ready to send the
next byte.

Finally, the RI bit means "Receive Interrupt." It functions similarly to the
"TI" bit, but it indicates that a byte has been received. Whenever the
8051 has received a complete byte it will trigger the RI bit to let the
program know that it needs to read the value quickly, before another
byte is read.

Setting the Serial Port Baud Rate
Once the Serial Port Mode has been configured, as explained above,
the program must configure the serial port’s baud rate. This only applies
to Serial Port modes 1 and 3. The Baud Rate is determined based on
the oscillator’s frequency when in mode 0 and 2. In mode 0, the baud
rate is always the oscillator frequency divided by 12. This means if the
crystal is 11.059Mhz, mode 0 baud rate will always be 921,583 baud. In
mode 2 the baud rate is always the oscillator frequency divided by 64,
so a 11.059Mhz crystal speed will yield a baud rate of 172,797. In
modes 1 and 3, the baud rate is determined by how frequently timer 1
overflows. The more frequently timer 1 overflows, the higher the baud
rate. There are many ways to set timer 1 to overflow at a rate that
determines a baud rate, but the most common method is to put timer 1
in 8-bit auto-reload mode (timer mode 2) and set a reload value (TH1)
that causes Timer 1 to overflow at a frequency appropriate to generate
a baud rate. To determine the value that must be placed in TH1 to
generate a given baud rate, we may use the following equation
(assuming PCON.7 is clear).

University of Portsmouth, Faculty of Technology, Department of Electronic and Computer Engineering
B122L – Principles of Digital Systems

 4

Crystall
3841 256

Baud
TH = −

If PCON.7 is set then the baud rate is effectively doubled, thus the
equation becomes:

Crystall
1921 256

Baud
TH = −

For example, if we have an 11.059Mhz crystal and we want to configure
the serial port to 19,200 baud we try plugging it in the first equation:

Crystall
3841 256

Baud
110590

384256
19200
28799256
19200

256 1.5
254.5

TH = −

= −

= −

= −
=

Since, timer register TH1 can only be loaded with integer number, if it is
set to 254 achieved baud rate is 14,400 and if it is set to 255 achieved
baud is 28,800. To achieve exactly 19,200 baud PCON.7 (SMOD) bit
needs to be set. This will double the baud rate and utilize the second
equation mentioned above:

Crystall
1921 256

Baud
110590

192256
19200

57699256
19200

256 3
253

TH = −

= −

= −

= −
=

The calculation results in an integer reload value for TH1. To obtain
19,200 baud with an 11.059MHz crystal we must therefore:

1) Configure Serial Port mode 1 or 3.
2) Configure Timer 1 to timer mode 2 (8-bit autoreload).
3) Set TH1 to 253 to reflect the correct frequency for 19,200 baud.
4) Set PCON.7 (SMOD) to double the baud rate.

Writing to the Serial Port
Once the Serial Port has been properly configured as explained above,
the serial port is ready to be used to send data and receive data. To
write a byte to the serial port one must simply write the value to the
SBUF (99h) SFR. Line of C code to send the letter "A" to the serial port
is: it could be accomplished as easily as:

SBUF = ’A’;

Upon execution of the above instruction the 8051 will begin transmitting
the character via the serial port. Obviously transmission is not
instantaneous - it takes a measurable amount of time to transmit. And
since the 8051 does not have a serial output buffer we need to be sure
that a character is completely transmitted before we try to transmit the
next character. The 8051 indicates when it is done transmitting a
character by setting the TI bit in SCON. When this bit is set the

University of Portsmouth, Faculty of Technology, Department of Electronic and Computer Engineering
B122L – Principles of Digital Systems

 5

character has been transmitted and the next character can be send as
well. Consider the following code segment:

SBUF = ‘A’; // write char to SBUF
while(!TI); // wait until done
TI = 0; // clear interrupt flag

The above three instructions will successfully transmit a character and
wait for the TI bit to be set before continuing. The program will pause on
the “while(!TI)” instruction until the TI bit is set by the 8051 upon
successful transmission of the character.

Reading the Serial Port
To read a byte from the serial port the value stored in the SBUF (99h)
SFR needs to be read after the 8051 has automatically set the RI flag in
SCON. For example, if the program wants to wait for a character to be
received and subsequently read it into the a program variable, the
following code segment may be used:

while(!RI); // wait for 8051 to set the flag
C = SBUF; // read the character from the port
RI = 0;

The first line of the above code segment waits for the 8051 to set the RI
flag; again, the 8051 sets the RI flag automatically when it receives a
character via the serial port. So as long as the bit is not set the program
waits on the "while(!RI)" instruction. Once the RI bit is set upon
character reception the above condition automatically fails and program
flow falls through to the next line to read the value received via serial
port. Last line of the code segment clears the flag for the next reading
of the port.

Example
Following two programs can be used to establish serial communication
between two 8051 microcontrollers. First program sends the message,
6 characters long to another 8051 while second program, to be run on
another 8051 can receive message of the same length.

/* program to send a message, 6 characters
long, to another 8051 via serial channel */

#include <reg66x.h>

char message[6] = {'H','e','l','p',' ','!'};
int letter;

main()
{
 /* initialise serial channel 0 */

S0CON = 0x40; /* UART mode 1 */
 TMOD = 0x20; /* timer mode 2 */
 TCON = 0x40; /* start the timer */
 TH1 = 0xE6; /* 1200 baud @ 12 MHz */

 /* transmit routine */

for (letter=0;letter<6;letter++)
 {

S0BUF = message[letter];
 while (!TI0);
 TI0 = 0;
 }

 /* afterwards wait in endless loop */
 while(1);
}

University of Portsmouth, Faculty of Technology, Department of Electronic and Computer Engineering
B122L – Principles of Digital Systems

 6

/* program to receive a message, 6 characters
long, from another 8051 via serial channel */

#include <reg517.h>

/* reserve space for the message */
char message[6];

int letter;

main()
{
 /* initialise serial channel 0 */

S0CON = 0x52;
/* UART mode 1, receive enabled */

 TMOD = 0x20; /* timer mode 2 */
 TCON = 0x40; /* start the timer */
 TH1 = 0xE6; /* 1200 baud @ 12 MHz */

 /* receive routine */

for (letter=0;letter<6;letter++)
 {
 while (!RI0);

message[letter] = S0BUF;
 RI0 = 0;
 }

 /* afterwards wait in endless loop */
 while(1);/* then wait in endless loop */
}

