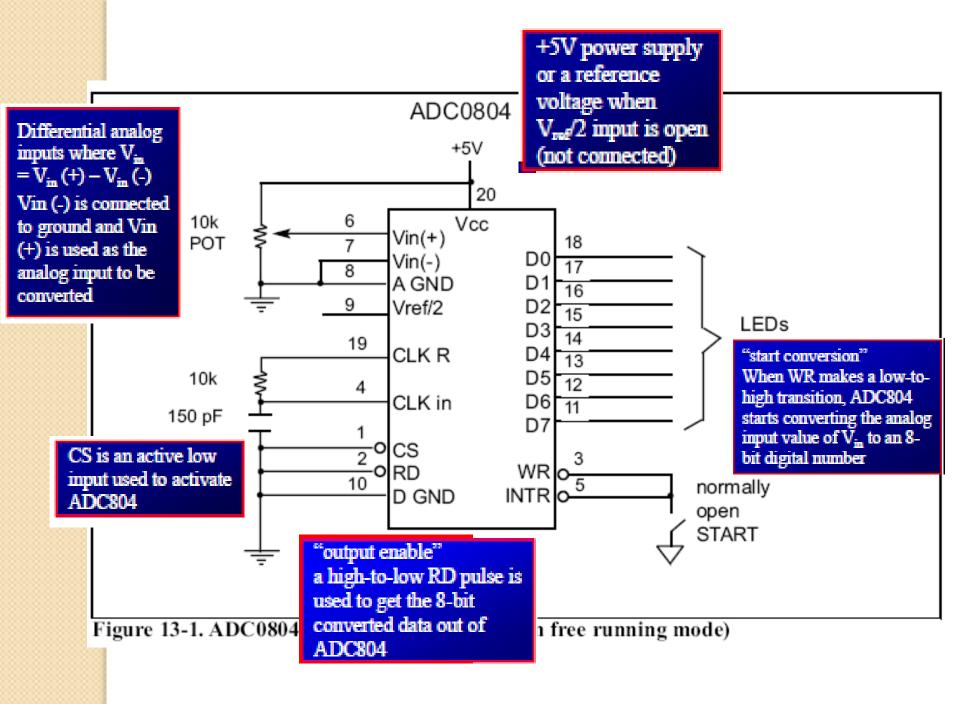
## CHAPTER 13

## ADC, DAC, AND SENSOR INTERFACING

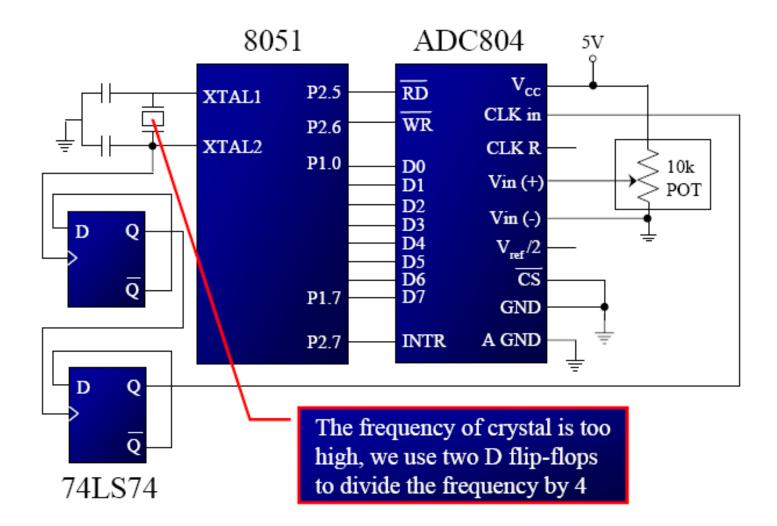



## ADC Devices

- ADCs (analog-to-digital converters) are among the most widely used devices for data acquisition
  - A physical quantity, like temperature, pressure, humidity, and velocity, etc., is converted to electrical (voltage, current) signals using a device called a transducer, or sensor
  - We need an analog-to-digital converter to translate the analog signals to digital numbers, so microcontroller can read them

## ADC804 Chip

- ADC804 IC is an analog-to-digital converter
  - It works with +5 volts and has a resolution of 8 bits
  - Conversion time is another major factor in judging an ADC
    - Conversion time is defined as the time it takes the ADC to convert the analog input to a digital (binary) number
    - In ADC804 conversion time varies depending on the clocking signals applied to CLK R and CLK IN pins, but it cannot be faster than 110 µs




- CLK IN and CLK R
  - CLK IN is an input pin connected to an external clock source
  - To use the internal clock generator (also called self-clocking), CLK IN and CLK R pins are connected to a capacitor and a resistor, and the clock frequency is determined by

$$f = \frac{1}{1.1 RC}$$

- Typical values are R = 10K ohms and C = 150 pF
  - We get f = 606 kHz and the conversion time is 110  $\mu s$

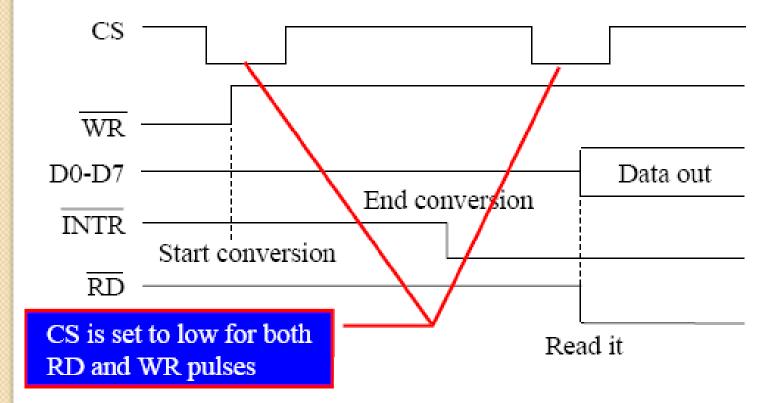
#### 8051 Connection to ADC804 with Clock from XTAL2 of 8051

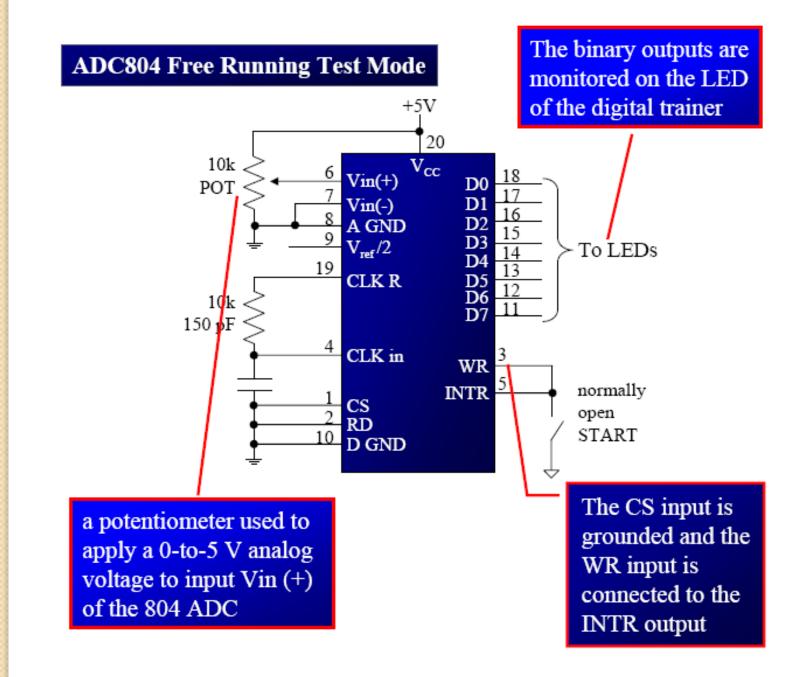


- V<sub>ref</sub>/2
  - It is used for the reference voltage
    - If this pin is open (not connected), the analog input voltage is in the range of 0 to 5 volts (the same as the  $V_{cc}$  pin)
    - If the analog input range needs to be 0 to 4 volts, V<sub>ref</sub>/2 is connected to 2 volts

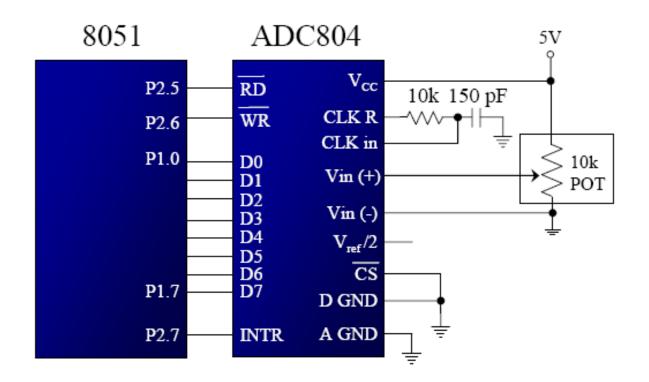
| Vref/2 Relation to Vin Range |           |                 |
|------------------------------|-----------|-----------------|
| Vref/2(v)                    | Vin(V)    | Step Size ( mV) |
| Not connected*               | 0 to 5    | 5/256=19.53     |
| 2.0                          | 0 to 4    | 4/255=15.62     |
| 1.5                          | 0 to 3    | 3/256=11.71     |
| 1.28                         | 0 to 2.56 | 2.56/256=10     |
| 1.0                          | 0 to 2    | 2/256=7.81      |
| 0.5                          | 0 to 1    | 1/256=3.90      |
|                              |           |                 |

Step size is the smallest change can be discerned by an ADC


- D0-D7
  - The digital data output pins
    - These are tri-state buffered
      - The converted data is accessed only when CS = 0 and RD is forced low
    - To calculate the output voltage, use the following formula


$$D_{out} = \frac{V_{in}}{step \ size}$$

- D<sub>out</sub> = digital data output (in decimal),
- V<sub>in</sub> = analog voltage, and
- step size (resolution) is the smallest change


- Analog ground and digital ground
  - $^{\rm o}$  Analog ground is connected to the ground of the analog  $V_{\rm in}$ 
    - To isolate the analog V<sub>in</sub> signal from transient voltages caused by digital switching of the output D0 – D7
    - This contributes to the accuracy of the digital data output
  - $^{\rm o}$  Digital ground is connected to the ground of the  $V_{\rm cc}$  pin

- The following steps must be followed for data conversion by the ADC804 chip
  - Make CS = 0 and send a low-to-high pulse to pin WR to start conversion
  - Keep monitoring the INTR pin
    - If INTR is low, the conversion is finished
    - If the INTR is high, keep polling until it goes low
  - After the INTR has become low, we make CS
     = 0 and send a high-to-low pulse to the RD
     pin to get the data out of the ADC804

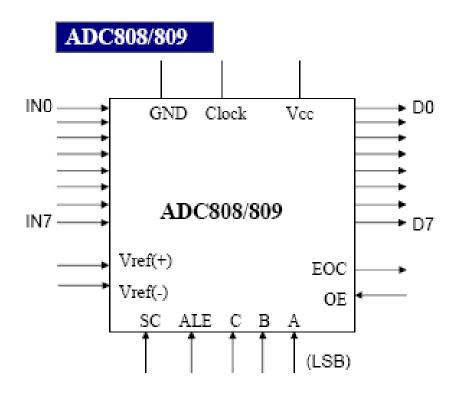




#### 8051 Connection to ADC804 with Self-Clocking



Examine the ADC804 connection to the 8051 in Figure 12-7. Write a program to monitor the INTR pin and bring an analog input into register A. Then call a hex-to ACSII conversion and data display subroutines. Do this continuously.


```
;p2.6=WR (start conversion needs to L-to-H pulse)
;p2.7 When low, end-of-conversion)
;p2.5=RD (a H-to-L will read the data from ADC chip)
;p1.0 - P1.7= D0 - D7 of the ADC804
;
```

|        | RD     | BIT P2.5     | ;RD                              |
|--------|--------|--------------|----------------------------------|
|        | WR     | BIT P2.6     | ;WR (start conversion)           |
|        | INTR   | BIT P2.7     | ;end-of-conversion               |
|        | MYDATA | EQU P1       | ;P1.0-P1.7=D0-D7 of the ADC804   |
|        | MOV    | P1,#0FFH     | ;make P1 = input                 |
|        | SETB   | INTR         |                                  |
| BACK:  | CLR    | WR           | ;WR=0                            |
|        | SETB   | WR           | ;WR=1 L-to-H to start conversion |
| HERE : | JB     | INTR, HERE   | ;wait for end of conversion      |
|        | CLR    | RD           | ;conversion finished,enable RD   |
|        | MOV    | A, MYDATA    | ;read the data                   |
|        | ACALL  | CONVERSION   | ;hex-to-ASCII conversion(Chap 6) |
|        | ACALL  | DATA_DISPLAY | ;display the data(Chap 12)       |
|        | SETB   | RD           | ;make RD=1 for next round        |
|        | SJMP   | BACK         |                                  |

## ADC808/809 Chip

- ADC808 has 8 analog inputs
  - The chip has 8-bit data output just like the ADC804
  - It allows us to monitor up to 8 different transducers using only a single chip
    - The 8 analog input channels are multiplexed and selected according to table below using three address pins, A, B, and C
- Steps to program ADC808/809
  - Select an analog channel by providing bits to A, B, and C addresses

| Selected Analog Channel | С | В | Α |
|-------------------------|---|---|---|
| INO                     | 0 | 0 | 0 |
| IN1                     | 0 | 0 | 1 |
| IN2                     | 0 | 1 | 0 |
| IN3                     | 0 | 1 | 1 |
| IN4                     | 1 | 0 | 0 |
| IN5                     | 1 | 0 | 1 |
| IN6                     | 1 | 1 | 0 |
| IN7                     | 1 | 1 | 1 |



# ADC808/809 Chip (cont.)

- Activate the ALE pin
  - It needs an L-to-H pulse to latch in the address
- Activate SC (start conversion ) by an H-to-L pulse to initiate conversion
- Monitor EOC (end of conversion) to see whether conversion is finished
- Activate OE (output enable ) to read data out of the ADC chip
  - An H-to-L pulse to the OE pin will bring digital data out of the chip

## ADC0848 interfacing

The ADC0848 IC is another analog-to-digital converter in the family of the ADC0800 series from National Semiconductor Corp.

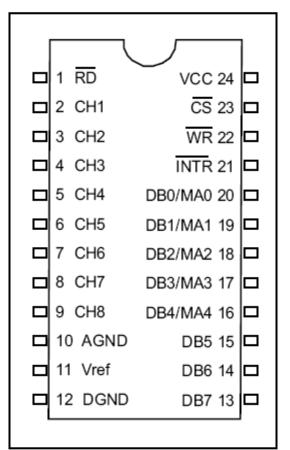



Figure 13-8. ADC0848 Chip

#### Example 13-1

For a given ADC0848, we have  $V_{ref} = 2.56$  V. Calculate the D0 - D7 output if the analog input is: (a) 1.7 V, and (b) 2.1 V. Solution:

Since the step size is 2.56/256 = 10 mV, we have the following. (a)  $D_{out} = 1.7$  V/10 mV = 170 in decimal, which gives us 10101011 in binary for D7 - D0.

(b)  $D_{out} = 2.1 \text{ V}/10 \text{ mV} = 210$  in decimal, which gives us 11010010 in binary for D7 - D0.

## DAC INTERFACING

This section will show how to interface a DAC (digital-toanalog converter) to the 8051.

## Digital-to-analog (DAC) converter

The digital-to-analog converter (DAC) is a device widely used to convert digital pulses to analog signals.

## MCI408 DAC (or DAC808)

In the MC1408 (DAC0808), the digital inputs are converted to current  $(I_{out})$ , and by connecting a resistor to the  $I_{out}$  pin, we convert the result to voltage. The total current provided by the  $I_{out}$  pin is a function of the binary numbers at the D0-D7 inputs of the DAC0808 and the reference current  $(I_{ref})$ , and is as follows:

$$I_{out} = I_{ref} \left( \frac{D7}{2} + \frac{D6}{4} + \frac{D5}{8} + \frac{D4}{16} + \frac{D3}{32} + \frac{D2}{64} + \frac{D1}{128} + \frac{D0}{256} \right)$$

where D0 is the LSB, D7 is the MSB for the inputs, and I<sub>ref</sub> is the input current that must be applied to pin 14.

#### Example 13-3

Assuming that R = 5K and  $I_{ref} = 2$  mA, calculate  $V_{out}$  for the following binary inputs: (a) 10011001 binary (99H) (b) 11001000 (C8H)

#### Solution:

(a)  $I_{out} = 2 \text{ mA} (153/256) = 1.195 \text{ mA} \text{ and } V_{out} = 1.195 \text{ mA} \times 5\text{K} = 5.975 \text{ V}$ (b)  $I_{out} = 2 \text{ mA} (200/256) = 1.562 \text{ mA} \text{ and } V_{out} = 1.562 \text{ mA} \times 5\text{K} = 7.8125 \text{ V}$ 

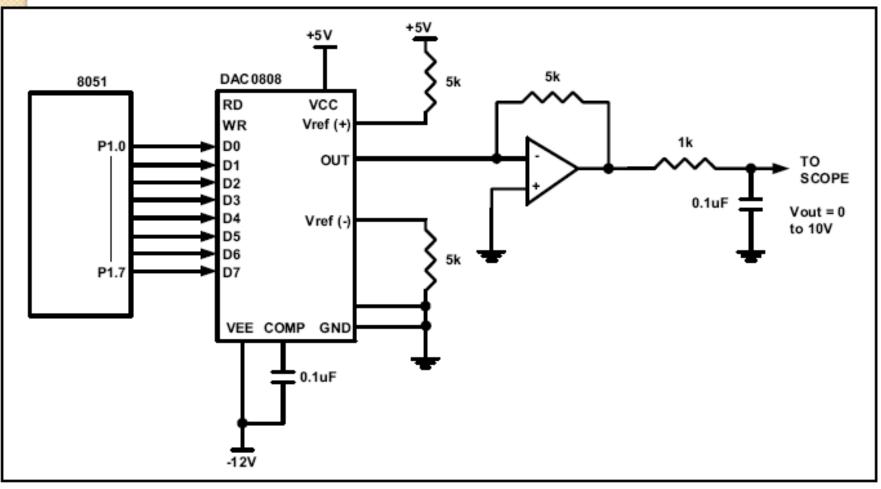



Figure 13-18. 8051 Connection to DAC808

### Generating a sine wave

To generate a sine wave, we first need a table whose values represent the magnitude of the sine of angles between 0 and 360 degrees. The values for the sine function vary from -1.0 to +1.0 for 0 – to 360- ° angles.

Therefore, to achieve the full-scale 10V output, we use the following equation.

$$V_{out} = 5 \text{ V} + (5 \times \sin \theta)$$

V<sub>out</sub> of DAC for various angles is calculated and shown:

| Angle θ<br>(degrees) | Sin θ  | V <sub>out</sub> (Voltage Magnitude)<br>5 V + (5 V × sin θ) | Values Sent to DAC (decimal)<br>(Voltage Mag. × 25.6) |
|----------------------|--------|-------------------------------------------------------------|-------------------------------------------------------|
| 0                    | 0      | 5                                                           | 128                                                   |
| 30                   | 0.5    | 7.5                                                         | 192                                                   |
| 60                   | 0.866  | 9.33                                                        | 238                                                   |
| 90                   | 1.0    | 10                                                          | 255                                                   |
| 120                  | 0.866  | 9.33                                                        | 238                                                   |
| 150                  | 0.5    | 7.5                                                         | 192                                                   |
| 180                  | 0      | 5                                                           | 128                                                   |
| 210                  | -0.5   | 2.5                                                         | 64                                                    |
| 240                  | -0.866 | 0.669                                                       | 17                                                    |
| 270                  | -1.0   | 0                                                           | 0                                                     |
| 300                  | -0.866 | 0.669                                                       | 17                                                    |
| 330                  | -0.5   | 2.5                                                         | 64                                                    |
| 360                  | 0      | 5                                                           | 128                                                   |

#### Table 13-7: Angle vs. Voltage Magnitude for Sine Wave

#### Example 13-5

Verify the values given for the following angles: (a)  $30^{\circ}$  (b)  $60^{\circ}$ .

#### Solution:

- (a)  $V_{out} = 5 V + (5 V \times \sin \theta) = 5 V + 5 \times \sin 30^\circ = 5 V + 5 \times 0.5 = 7.5 V$ DAC input values = 7.5 V × 25.6 = 192 (decimal)
- (b)  $V_{out} = 5 V + (5 V \times \sin \theta) = 5 V + 5 \times \sin 60^\circ = 5 V + 5 \times 0.866 = 9.33 V$ DAC input values = 9.33 V × 25.6 = 238 (decimal)

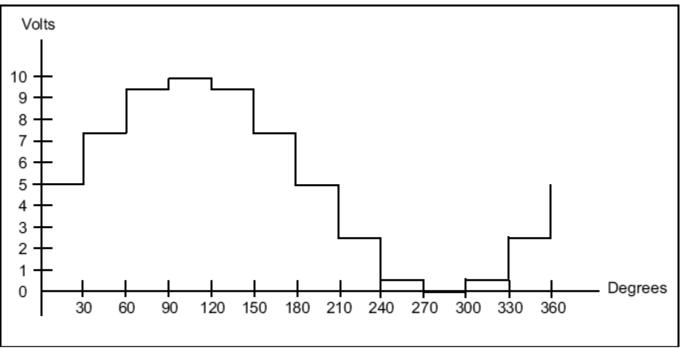



Figure 13-19. Angle vs. Voltage Magnitude for Sine Wave

# This program sends the values to the DAC continuously (in an infinite loop) to produce a crude sine wave.

| AGAIN: | MOV DPTR, #TABLE                           |
|--------|--------------------------------------------|
|        | MOV R2,#COUNT                              |
| BACK:  | CLR A                                      |
|        | MOVC A,@A+DPTR                             |
|        | MOV P1,A                                   |
|        | INC DPTR                                   |
|        | DJNZ R2,BACK                               |
|        | SJMP AGAIN                                 |
|        | ORG 300                                    |
| TABLE: | DB 128,192,238,255,238,192 ;see Table 13-7 |
|        | DB 128,64,17,0,17,64,128                   |
|        |                                            |
|        |                                            |

;To get a better looking sine wave, regenerate ;Table 13-7 for 2-degree angles

## Interfacing Temperature Sensor

- A thermistor responds to temperature change by changing resistance
  - Its response is not linear
  - The complexity associated with writing software for such nonlinear devices has led many manufacturers to market the linear temperature sensor

| Temperature (C) | Tf (K ohms) |
|-----------------|-------------|
| 0               | 29.490      |
| 25              | 10.000      |
| 50              | 3.893       |
| 75              | 1.700       |
| 100             | 0.817       |

From William Kleitz, digital Electronics

# LM34 and LM35 Temperature Sensors

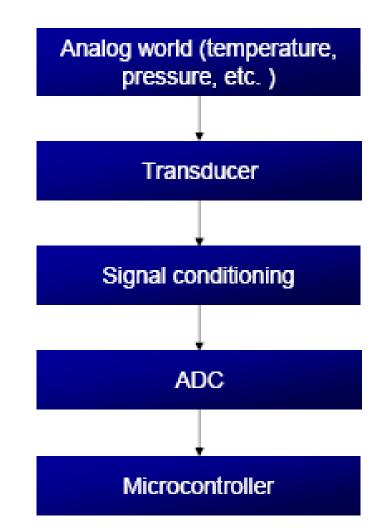
- The sensors of the LM34/LM35 series are precision integrated-circuit temperature sensors
  - The output voltage is linearly proportional to the Fahrenheit/Celsius temperature
  - The LM34/LM35 requires no external calibration since it is inherently calibrated
  - It outputs 10 mV for each degree of Fahrenheit/Celsius temperature

| Part   | Temperature Range | Accuracy | Output  |
|--------|-------------------|----------|---------|
| Scale  |                   |          |         |
| LM34A  | -50 F to +300 F   | +2.0 F   | 10 mV/F |
| LM34   | -50 F to +300 F   | +3.0 F   | 10 mV/F |
| LM34CA | -40 F to +230 F   | +2.0 F   | 10 mV/F |
| LM34C  | -40 F to +230 F   | +3.0 F   | 10 mV/F |
| LM34D  | -32 F to +212 F   | +4.0 F   | 10 mV/F |

#### Table 13-9: LM34 Temperature Sensor Series Selection Guide

Note: Temperature range is in degrees Fahrenheit.

#### Table 13-10: LM35 Temperature Sensor Series Selection Guide


| Part   | Temperature Range | Accuracy | Output Scale |
|--------|-------------------|----------|--------------|
| LM35A  | -55 C to +150 C   | +1.0 C   | 10 mV/C      |
| LM35   | –55 C to +150 C   | +1.5 C   | 10 mV/C      |
| LM35CA | -40 C to +110 C   | +1.0 C   | 10 mV/C      |
| LM35C  | -40 C to +110 C   | +1.5 C   | 10 mV/C      |
| LM35D  | 0 C to +100 C     | +2.0 C   | 10 mV/C      |

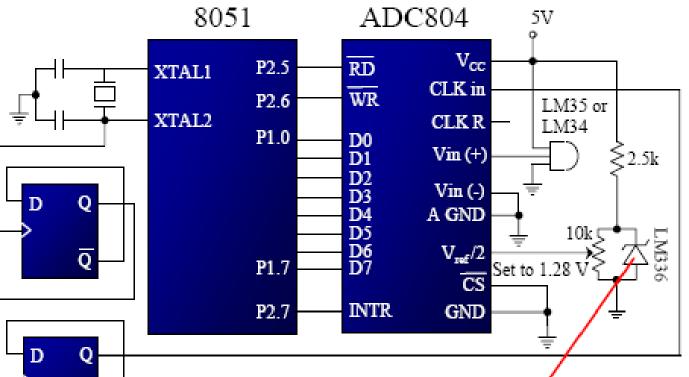
Note: Temperature range is in degrees Celsius.

# Signal Conditioning and Interfacing LM35

- Signal conditioning is a widely used term in the world of data acquisition
  - It is the conversion of the signals (voltage, current, charge, capacitance, and resistance) produced by transducers to voltage, which is sent to the input of an A-to-D converter
    - Signal conditioning can be a current-to-voltage conversion or a signal amplification
    - The thermistor changes resistance with temperature
      - The change of resistance must be translated into voltage in order to be of any use to an ADC

Getting Data From the Analog World




#### Example:

Look at the case of connecting an LM35 to an ADC804. Since the ADC804 has 8-bit resolution with a maximum of 256 steps and the LM35 (or LM34) produces 10 mV for every degree of temperature change, we can condition Vin of the ADC804 to produce a Vout of 2560 mV full-scale output. Therefore, in order to produce the full-scale Vout of 2.56 V for the ADC804, We need to set Vref/2 = 1.28. This makes Vout of the ADC804 correspond directly to the temperature as monitored by the LM35.

#### Temperature vs. Vout of the ADC804

| Temp. (C) | Vin (mV) | Vout (D7 – D0) |
|-----------|----------|----------------|
| 0         | 0        | 0000 0000      |
| 1         | 10       | 0000 0001      |
| 2         | 20       | 0000 0010      |
| 3         | 30       | 0000 0011      |
| 10        | 100      | 0000 1010      |
| 30        | 300      | 0001 1110      |

#### 8051 Connection to ADC804 and Temperature Sensor



74LS74

Notice that we use the LM336-2.5 zener diode to fix the voltage across the 10K pot at 2.5 volts. The use of the LM336-2.5 should overcome any fluctuations in the power supply

## Signal conditioning and interfacing the LM35 to the 8051

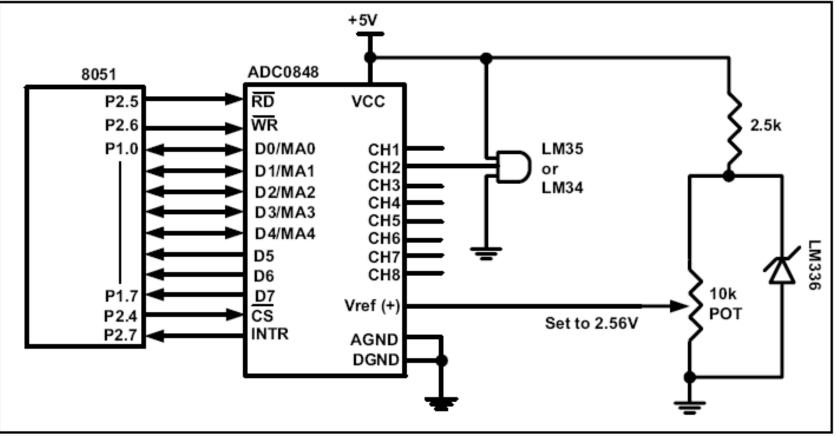



Figure 13-21. 8051 Connection to ADC0848 and Temperature Sensor

### **Reading and displaying temperature**

```
;Program 13-1
;Assembly code to read temperature, convert it,
; and put it on P0 with some delay
     RD BIT P2.5
                          ;RD
     WR BIT P2.6
                          ;WR (start conversion)
     INTR BIT P2.7
                          ;end-of-conversion
     MYDATA EQU P1 ; P1.0-P1.7=D0-D7 of the ADC0848
     MOV P1,#0FFH
                          ;make P1 = input
     SETB INTR
BACK: CLR WR
                          ; WR = 0
     SETB WR
                          ;WR=1 L-to-H to start conversion
                          ;wait for end of conversion
HERE: JB INTR, HERE
     CLR RD
                          ;conversion finished,enable RD
     MOV A, MYDATA
                          ;read the data from ADC0848
     ACALL CONVERSION
                                ;hex-to-ASCII conversion
     ACALL DATA DISPLAY
                          ; display the data
                          ;make RD=1 for next round
     SETB RD
     SJMP BACK
```

#### CONVERSION:

| MOV | в,#10 |
|-----|-------|
| DIV | AB    |
| MOV | R7,B  |
| MOV | в,#10 |
| DIV | AB    |
| MOV | R6,B  |
| MOV | R5,A  |
| RET |       |

;least significant byte

;most significant byte

DATA\_DISPLAY MOV P0,R7 ACALL DELAY MOV P0,R6 ACALL DELAY MOV P0,R5 ACALL DELAY RET