R.N.G.P.I.T, Bardoli Electrical Engineering Department Subject: EMMI

> Prepared By: Dr. Shaikh Mohammed Suhel

Prepared By:

• NAME: DR. SHAIKH MOHAMMED SUHEL

(ASSISTANT PROFESSOR RNGPIT, SURAT)

- FORMER ASSISTANT PROFESSOR IN SCET, SNPIT&RC, VIT
- QUALIFICATION: PHD (POWER- ELECTRONICS & DRIVES, NIT, SURAT), M.TECH (INDUSTRIAL ELECTRONICS, NIT-SURAT), GATE, B.E. (ELECTRICAL ENGINEERING., VNSGU-SURAT).
- EXPERIENCE: 13 YEARS.

CH: Analog Instrumentation

- This Lecture contain
- Instrument Transformer and their applications in the extension of instrument range

Introduction

Name: Dr. Shaikh Mohammed Suhel

(Assistant Professor RNGPIT, Surat)

- Former Assistant Professor in SCET, SNPIT&RC,
 VIT
- Qualification: PhD (Power- Electronics & Drives, NIT, Surat),

M.Tech (Industrial Electronics, NIT-Surat), Gate, B.E. (Electrical Engineering., VNSGU-Surat).

• Experience: 13 Years.

- Instrument Transformer:
- In Power system current and voltage handled are very high and hence direct measurement with conventional instrument is not possible without compromising operator safety.
- The solution is to step down these current and voltage with the help of instrument transformer so that instrument of moderate rating can be used for measurement.
- The transformer used in conjunction with measuring instrument for the measurement purpose are called "instrument transformer".

- Construction and operation:
- The transformer used for measurement of current is called "current transformer" (CT)·
- Transformer used for voltage measurement is called "voltage transformer or potential transformer" (PT)
- Instrument transformer are used to (1) extend the range of measuring instrument (2) isolate the measuring instrument from a high voltage line.
- The voltage and current of PT & CT are standardized at 110V & 5A.
- It is safe for operator and equipment in the switchyard or meeting room·
- There are very less power loss in CT & PT compared to shunts & series for extending the range of instrument.
- Several instrument can be operated from single instrument transformer

• Operation:

$$\frac{N_1}{N_2} = \frac{V_P}{V_S} \qquad V_S = \frac{N_2}{N_1} V_P$$

 $MMF_1 = MMF_2$

 $N_1 \mathbf{I}_P = N_2 \mathbf{I}_S$

$$\mathbf{I}_{S} = \frac{N_{1}}{N_{2}} I_{P}$$

• Ratios of instrument Transformer:

Transformation Ration (R) = $\frac{|Primary Phasor|}{|Secondary Phasor|}$

 $R = \frac{Primary winding Current}{Secondary winding Current} => C.T.$

 $R = \frac{\text{Primary winding Voltage}}{\text{Secondary winding Voltage}} => P.T.$

Nominal Ratios (n) = $\frac{\text{No. of turns of secondary winding}}{\text{No. of turns of primary winding}} => C.T.$

Nominal Ratios (n) = $\frac{\text{No. of turns of Primary winding}}{\text{No. of turns of Secondary winding}} => P.T.$

The ratio mentions on name plate of instrument transformer is "Nominal Ratios"

Transformation Ratio(R)=Nominal Ratios (n)×ratio correction factor (R.C.F)

 $\% Ratio error = \frac{Nominal ratio-Actual Ratio}{Actual Ratio}$

CURREN	IT TRANS	FORMER	2	T	уре	1 6	9/115
Ser. N ^o	921410 Year 2003 OA, WO 300825						00825
Um	69/	115 kV	/ I _{th}	40 kA	1 sec	f	60 Hz
Utest	230 /	550 kV	/ I _{dyn}	100	KA We	ight 3	50 kg
Prim. A	P1 - P2 2000						
	1S1-1S3	1S1-1S2	2\$1-2\$3	2S1-2S2	3\$1-3\$3	3\$1-3\$2	4\$1-452
Ratio	1000/5	500/5	1000/5	500/5	1000/5	500/5	2000/5
VA	50	50	50	50	30	30	200010
cl	5P	5P	5P	5P	0.3 B	0.3 B	10 P
n	≥ 20	≥ 20	≥ 40	≥ 40	≤ 5	< 5	TIOF
U _{kp} (V)		1.5	A SA PARA				>400
D (O)	CE I CONTRACTOR OF				the second s	A DESCRIPTION OF THE OWNER	- 400

- Burdon of an instrument transformer:
- The rated burden is the volt-ampere (VA) loading which is permissible without errors exceeding the limits for a particular class of accuracy.

Total secondary winding burdon= $\frac{(\text{secondary winding induced voltage})^2}{(\text{Impedance of secondary winding circuit})}$

Total secondary winding burdon= $(\text{secondary winding current})^2 \times$ (Total impedance of secondary winding circuit)

Secondary winding burdon due to load= $\frac{(\text{secondary winding terminal voltage})^2}{(\text{Impedance of load on secondary winding})}$

Secondary winding burdon due to load=(secondary winding current)² × (Impedance of load in secondary winding circuit)

• Operation:

 $N_1 \mathbf{I}_P = N_2 \mathbf{I}_S$

$$\mathbf{I}_{S} = \frac{N_{1}}{N_{2}} I_{P}$$

- To reduce error (because of no load current):
- High permeability core·
- Decreasing Core losses ·
- Decreasing the leakage reactance
- Turns compensation (to reduce ratio error)
- EX: Let us consider 1000/5A CT with loss component equal to 0.6% of primary winding current.

$$R \approx n + \frac{I_C}{I_S}$$

THANK YOU