Class notes : APE,

Multilevel Inverter Lect:3

Cascade Multi level Inverter (Symmetrical)

5 Level Cascade Multilevel Inverter

 \blacktriangleright The output phase level voltage is N=2Ns+1; Where Ns is the number of dc source

Operation:

As shown in the figure total 5 level of output voltage can be achieved; i.e. +2Vdc, +Vdc, 0, -Vdc, -2Vdc

Prepared By: Dr. Shaikh Mo Suhel (PhD, M.Tech, GATE, B.E Electrical) Associate Professor & Head of Electrical Department

- > By switching combination, we can obtain the different level of output voltage, for example when S_{11} and S_{14} switches are ON output voltage of upper inverter is +Vdc and at the same time when S_{21} and S_{24} switches are ON output voltage of lower inverter is also +Vdc, so total output voltage across the load is +2Vdc.
- > Table shows the summary of output voltage with different switching states:

(Student Note: In case of switching redundancy, only one switching combinations are shown in the table, remaining possibilities students have to find out and fill the table)

Vo	S ₁₁	S ₁₂	S ₁₃	S ₁₄	S ₂₁	S ₂₂	S ₂₃	S ₂₄
2Vdc	1	0	0	1	1	0	0	1
	1	0	0	1	1	1	0	0
Vdc								
0	1	1	0	0	1	1	0	0
-Vdc	0	1	1	0	1	1	0	0
-2Vdc	0	1	1	0	0	1	1	0

Feature:

- Need separate DC source (not suitable for AC-DC then DC_AC); well suitable for renewable
- > If not switching synchronising, short circuit can be introduced
- > All switching devices stress are equal

Advantages:

- List no of component requirement to achieve same level
- Optimize circuit layout and packages
- > Soft switching can be used to reduce switching losses
- > In parallel connection, device shares current, so topology is good for high current loads

Disadvantages:

Needs separate dc source

Prepared By: Dr. Shaikh Mo Suhel (PhD, M.Tech, GATE, B.E Electrical) Associate Professor & Head of Electrical Department

Prepared By: Dr. Shaikh Mo Suhel (PhD, M.Tech, GATE, B.E Electrical) Associate Professor & Head of Electrical Department

9 Level Cascade Asymmetrical Multilevel Inverter

- Upper cell switches must have high voltage blocking capabilities
- Generate 9 level of output voltage using only 2 separate dc source
- > Use Transformer to provide isolated dc power supply
- HV stage will be supplied more power to the load under this condition LV stage will require to operate in rectification mode

Prepared By: Dr. Shaikh Mo Suhel (PhD, M.Tech, GATE, B.E Electrical) Associate Professor & Head of Electrical Department