Class notes : APE,

<u>Prepared By: Dr.Shaikh Mohammed Suhel (Ph.D, M.Tech, Gate, B.E)</u> <u>Associate Professor and Department Head R.N.G.P.I.T (BARDOLI)</u>

Multilevel Inverter Lect:2

Three level Flying Capacitor type MLI:

- Also called multicell converter
- > Instead of clamping diode capacitor to hold the voltage level
- > No of switches= 2(n-1)=4
- > No of diode=2(n-1)=4
- > No of capacitor= (n-1)=2
- ▶ Balancing Capacitor= (n-1)(n-2)/2=1
- ➢ Any time switches ON=(n-1)=2
- > The switches of each cell are complementary controlled (for example $S_1 = \overline{S_4}$)

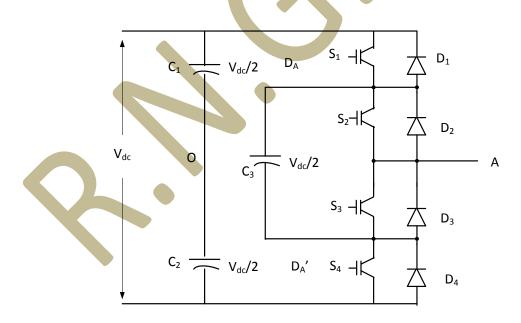


Fig.1: 3-Level Flying Capacitor Type MLI

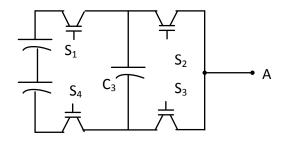
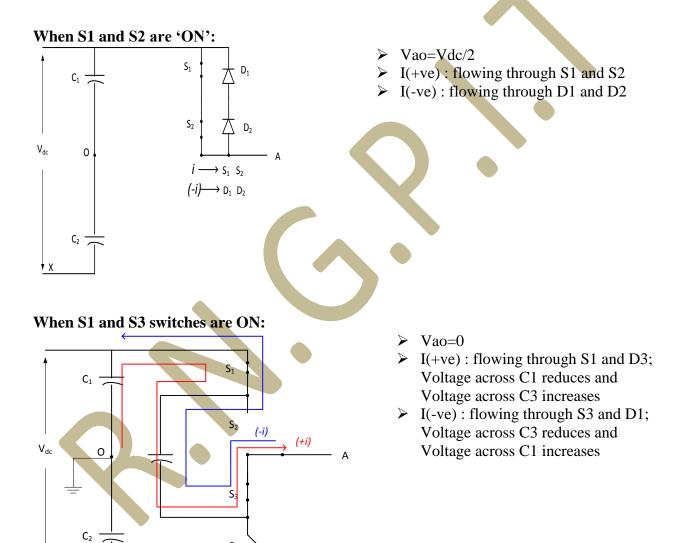



Fig.2: 3-Level FC-MLI Multi cell structured

 S_4

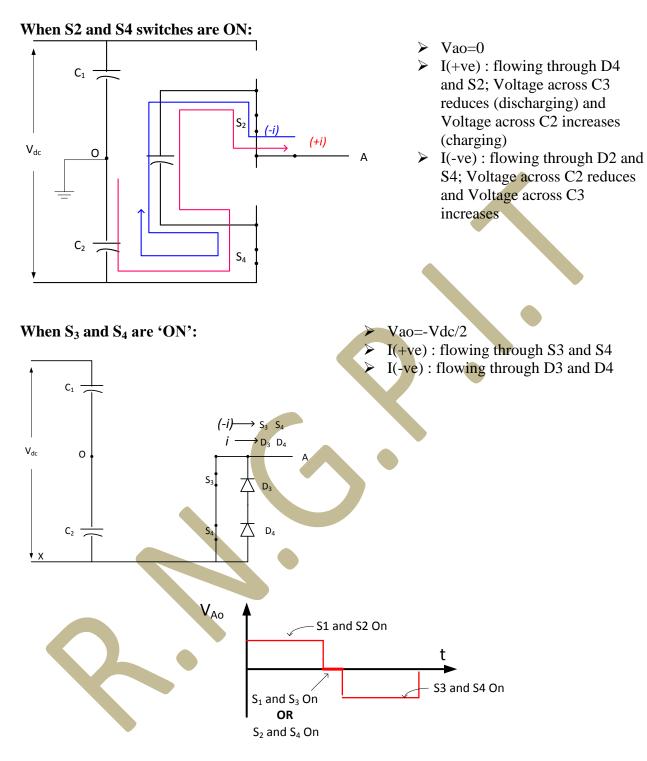


Fig.3: Output Pole Voltage VAO

Difference between Diode clamped and flying capacitor type MLI:

Here, clamping capacitor is used instead of diode, since capacitor do not block reverse voltage no of switching combination increases (switching redundancy)

- Several switching state will be able to generate same voltage level, giving the topology redundant switching state
- > All capacitors are alike

Switching state of 3 level Inverter:											
Switching	S_1	\mathbf{S}_2	S_3	S_4	V _{AO}	V _{AX}					
state											
	ON	ON	OFF	OFF	$V_{dc}/2$	V_{dc}					
	ON	OFF	ON	OFF	0	$V_{dc}/2$					
	OFF	ON	OFF	ON	0	$V_{dc}/2$					
	OFF	OFF	ON	ON	$-V_{dc}/2$	0					

Flying Capacitor type 5 Level MLI

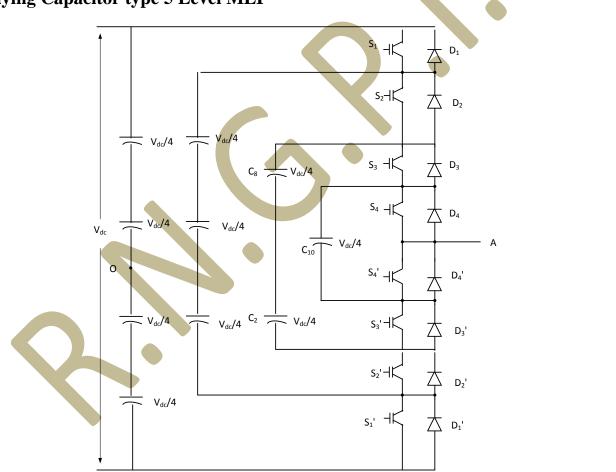


Fig.1: 5-Level flying Capacitor type MLI

No of switches= 2(n-1)=8
No of diode=2(n-1)=8
No of capacitor= (n-1)= 4
Balancing Capacitor= (n-1) (n-2)/2=6 ;

Any time switches ON=(n-1)=4

Vao	S ₁	S_2	S ₃	S_4	S ₄ '	S ₃ '	S ₂ '	S ₁ '
Vdc/2	1	1	1	1	0	0	0	0
	1	1	1	0	1	0	0	0
Vdc/4	0	1	1	1	0	0	0	1
_	1	0	1	1	0	0	1	0
_	1	1	0	1	0	1	0	0
	1	1	0	0	0	0	1	1
0								
	0	0	0	1	0	1	1	1
-Vdc/4								
-Vdc/2	0	0	0	0	1	1	1	1

Features

 Large number of capacitors required Balancing Capacitor voltage

Advantages:

- > THD is reduced
- > Real and reactive power both can be controlled
- Switching combination redundancy
- Large capacitor provides capabilities during power outage

Disadvantage:

- > Excessive number of storage capacitor makes the system costly and bulky
- Inverter control can be complicated