
Class notes : APE,

Prepared By: Dr.Shaikh Mohammed Suhel (Ph.D, M.Tech, Gate, B.E) Associate Professor and Department Head

Multilevel Inverter

Definition: The number of steps in the voltage of the output terminal with respect to any arbitrary internal reference point.

> Generated stepped waveform output voltage with adjusted frequency and amplitude.

Question: Why Multilevel Inverter is required? Or Difference between two level and Multilevel Inverter

2 Level Inverter	Multilevel Inverter		
1) The stress on the device is high in case of two level inverter as $\frac{dv}{dt}$ is high in this configuration.	1) The stress on the device is low as voltage increases in stepped manner and so that $\frac{dv}{dt}$ is lower in this type configuration		
2) Higher voltage operation is difficult	2) Higher voltage operation is easily		

- 3) Filter size requirement is higher in two level
- As power level increases, dc link voltage and switching frequency has to be reduced. This action lead to generate lower order harmonics (7th and 9th)
- 5) Devise rating is high in case of 2 level inverter

possible as voltage is distributed among the series connected switches

- 3) MLI (Multi level Inverter) reduces the filter size requirement
- 4) MLI reduces the lower order harmonics and operates with lower switching frequencies
- 5) Device rating reduces significantly and this will reduces the cost of MLI

Types of MLI:

- 1) Diode clamped MLI or Neutral Point Clamped (NPC) MLI
- 2) Flying capacitor type MLI
- 3) Cascade H-Bridge MLI

Diode Clamped MLI:

Three level Diode Clamped MLI:

- ➢ Fig. 1 shows the one leg of Inverter (total three legs of three phase)
- No of Capacitor require= (N-1) =2 ; where N is the level of Inverter No of switches required/phase= 2(N-1) =4 Any times switches 'ON'= (N-1) =2

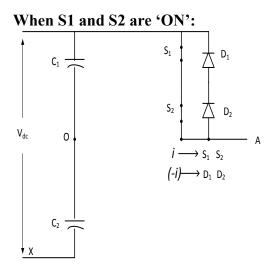
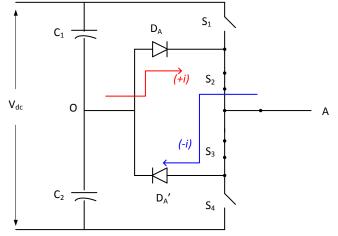
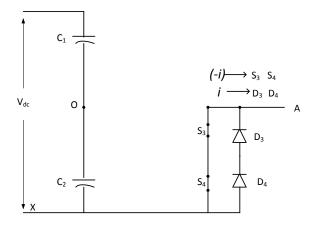




Fig.1: 3-Level Diode clamped MLI


When S₂ and S₃ are 'ON':

- \succ Here, $V_{ax}=V_{dc}$ and $V_{ao}=V_{dc}/2$;
- The positive direction of current flows through -C₂-C₁-switch S₁ and S₂
- The negative direction of current (Load to source) flows through diode D₁ and D₂-C₁-C₂

- \blacktriangleright Here, $V_{ax} = V_{dc}/2$ and $V_{ao} = 0$;
- The positive direction of current flows through -D_A-switch S₂
- The negative direction of current (Load to source) flows throughswitch S₃-and D_A'

When S₃ and S₄ are 'ON':

- \succ Here, $V_{ax}=0$ and $V_{ao}= V_{dc}/2$;
- The positive direction of current flows through -C₁-C₂-diode D₄ and D₃
- The negative direction of current (Load to source) flows through switch S₃-S₄ and -C₂-C₁

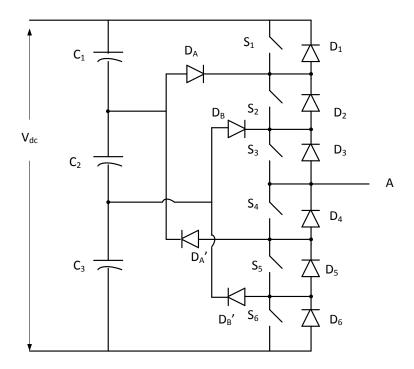
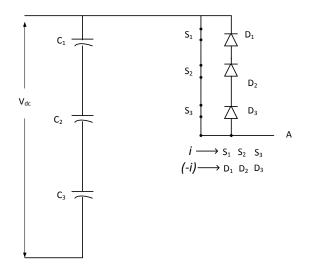
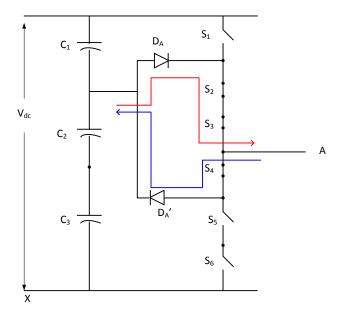


Fig.2: Output Pole Voltage VAO

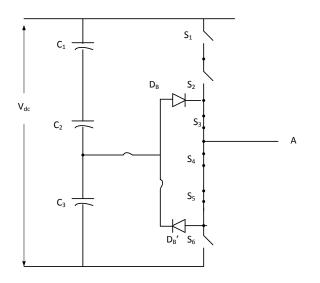

Switching sta	te of 3 level	Inverter:				
Switching	S_1	S_2	S ₃	S_4	V _{AO}	V _{AX}
state						
	ON	ON	OFF	OFF	$V_{dc}/2$	V _{dc}
	OFF	ON	ON	OFF	0	$V_{dc}/2$
	OFF	OFF	ON	ON	-V _{dc} /2	0

Four level Diode Clamped MLI:

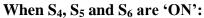
- Fig. 4 shows the one leg of Inverter (total three legs of three phase)
- No of Capacitor require= (N-1) =3; where N (=4) is the level of Inverter No of switches required/phase= 2(N-1) =6 Any times switches 'ON'= (N-1) =3

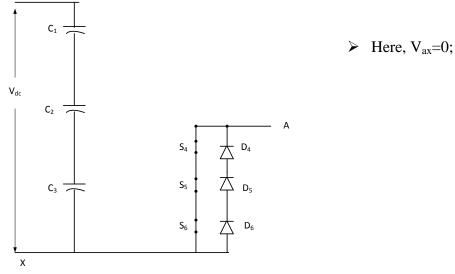


When S₁, S₂ and S₃ are 'ON':


- \blacktriangleright Here, $V_{ax}=V_{dc}$;
- The positive direction of current flows through C₃-C₂-C₁-switch S₁ S₂ and S₃
- The negative direction of current (Load to source) flows through diode D₁ D₂ and D₃-C₁-C₂-C₃

When S₂, S₃ and S₄ are 'ON':




- > Here, $V_{ax}=2V_{dc}/3$;
- The positive direction of current flows through D_A-switch S₂ and S₃
- The negative direction of current (Load to source) flows through S₄ diode D_A'

When S₃, S₄ and S₅ are 'ON':

- \blacktriangleright Here, $V_{ax}=V_{dc}/3$;
- The positive direction of current flows through D_B-switch S₃
- The negative direction of current (Load to source) flows through S₄ S₅diode D_B'

Features of NPC MLLI (or Diode Clamped MLI):

- ➤ In 4 Level NPC MLI D_A has to block 1/3 V_{dc} (Rating)
- \succ D_A' has to block 2/3 V_{dc}
- Separate heat sink required in this case
- Voltage unbalance issue: When o/p voltage is Vdc: C1, C2, C3 supply the power and When o/p voltage is 2/3 Vdc C2, C3 supply the power-> so voltage across C1 increases compare to other two capacitors.

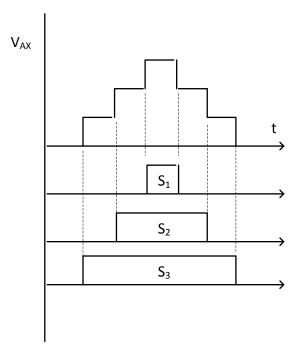


Fig.4: Output Voltage V_{AX}

Advantages:

- ➢ Filter size reduces
- All switches operate at fundamental frequency so switching losses are reduced and efficiency increase.
- > Control Method is simple

Disadvantage:

> When no of level increases, no of clamping diode increases.