PRESENTATION ON Time Response Analysis of system

Content

- \triangleright Standard Test Signals
- What is time response ?
- \triangleright Types of Responses
- \triangleright Analysis of First order system
- \triangleright Analysis of Second order system

- Impulse signal
	- The impulse signal imitate the sudden shock characteristic of actual input signal.

$$
\delta(t) = \begin{cases} A & t = 0 \\ 0 & t \neq 0 \end{cases}
$$

 $-$ If A=1, the impulse signal is called unit impulse signal.

- Step signal
	- The step signal imitate the sudden change characteristic of actual input signal.

$$
u(t) = \begin{cases} A & t \ge 0 \\ 0 & t < 0 \end{cases}
$$

 $-$ If A=1, the step signal is called unit step signal

- Ramp signal
	- The ramp signal imitate the constant velocity characteristic of actual input signal.

$$
r(t) = \begin{cases} At & t \ge 0 \\ 0 & t < 0 \end{cases}
$$

– If *A=1*, the ramp signal is called unit ramp signal

- Parabolic signal
	- The parabolic signal imitate the constant acceleration characteristic of actual input signal.

$$
p(t) = \begin{cases} \frac{At^2}{2} & t \ge 0\\ 0 & t < 0 \end{cases}
$$

– If *A=1*, the parabolic signal is called unit parabolic signal.

Relation between standard Test Signals

Time Response

 \triangleright In time domain analysis, time is the independent variable.

 \triangleright When a system is given an excitation(input), there is response(output). This response varies with time and it is called time response.

Generally the response of any system has two types,

≻Transient Response

 \triangleright Steady State Response

Transient Response

 \triangleright The system takes certain time to achieve its final value.

- DEF :- The variation of output response during the time ; it takes to reach its final value is called as transient response of a system.
	- The time period required to reach to its final value is called as transition period.

Thus mathematically it can be expressed as,
\n
$$
Lt
$$
\n
$$
t \to 0 \quad c_t(t) = 0
$$

Example

From the transient response we can know,

- \triangleright When the system is begin to respond after an input is given.
- \triangleright How much time it takes to reach the output for the first time.
- \triangleright Whether the output shoots beyond the desired value and how much.
- \triangleright Whether the output oscillates about its final value.
- When does it settle to the final value.

Steady State Response

- \triangleright It is basically the final value achieved by the system output.
- \triangleright The steady state response starts when the transient response completely dies out.
- DEF :- " The part of response the remains after the transients have dies out is called as steady state response. "

From the steady state we can know,

 \triangleright How long it took before steady state was reached.

 \triangleright Whether there is any error between the desired and actual values.

 Whether this error is constant , zero or infinite.

Parameters

1. Total Response :

 \triangleright The total response of system is addition of transient response and steady state response.

 \triangleright It is denoted by c(t)

2. Steady state error:

 \triangleright The difference between desired output and actual output of system is called as steady state error.

Analysis of First Order System

 \triangleright A first-order system without zeros can be represented by the following transfer function

$$
\frac{C(s)}{R(s)} = \frac{1}{\tau s + 1}
$$

 \triangleright Given a step input, i.e., $R(s) = 1/s$, then the system output (called **step response** in this case) is

$$
C(s) = \frac{1}{\tau s + 1} R(s) = \frac{1}{s(\tau s + 1)} = \frac{1}{s} - \frac{1}{s + \frac{1}{\tau}}
$$

Taking inverse Laplace transform , we have the step response

$$
c(t) = 1 - e^{-\frac{t}{\tau}}
$$

Time Constant: If t= τ , So the step response is $C(\tau) = (1 - 0.37) = 0.63$

τ is referred to as the **time constant** of the response.

Analysis of second order system

 \triangleright Damping Ratio :

The damping is measured by a factor called as damping ratio.

- \triangleright It is denoted by ζ .
- \triangleright So when zeta is maximum; it produces maximum opposition to the oscillatory behavior of system.

\triangleright Natural frequency of oscillation :

When zeta is zero ; that means there is no opposition to the oscillatory behavior of a system then the system will oscillate naturally.

 \triangleright Thus when zeta is zero the system oscillates with max frequency.

 A general second-order system is characterized by the following transfer function:

$$
G(s) = \frac{b}{s^2 + as + b}
$$

 We can re-write the above transfer function in the following form (closed loop transfer function):

$$
G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}
$$

According the value of ζ , a second-order system can be set into one of the four categories:

1. Over damped :

when the system has two real distinct poles $(7 > 1)$.

2. Under damped :

when the system has two complex conjugate poles $(0 < \zeta < 1)$

3. Un-damped :

when the system has two imaginary poles $(ζ = 0)$. 4. Critically damped :

when the system has two real but equal poles $(ζ = 1)$.

THANK YOU