Chapter 01 Conventional Generation, Load Curves and Tariffs:

Lecture : 07

TOPIC:

1. Choice of site for hydro-electric power station

2. Constituents of hydro electric plant

<u>Chapter: 01</u> <u>Conventional Generation, Load Curves and Tariffs:</u>

- Generation scenario in India and Gujarat
- Steam power station, Schematic arrangement of steam power station, Equipment's of steam power station,
- Hydroelectric power station, Schematic arrangement of hydro-electric power station, Constituents of hydro-electric plants,
- Nuclear power station, Schematic arrangement of nuclear power station, Nuclear reactor,
- Gas turbine power plant, Schematic arrangement of gas turbine power plant,
- Comparison Of Various Power Plants.
- Load curves, Important terms and factors, Load duration curve, Examples. Tariff, Desirable characteristics of tariff, Types of tariff, Examples.

CHOICE OF SITE FOR HYDRO-ELECTRIC POWER STATION

The following points should be taken into account while selecting the site for a hydro-electric power station :

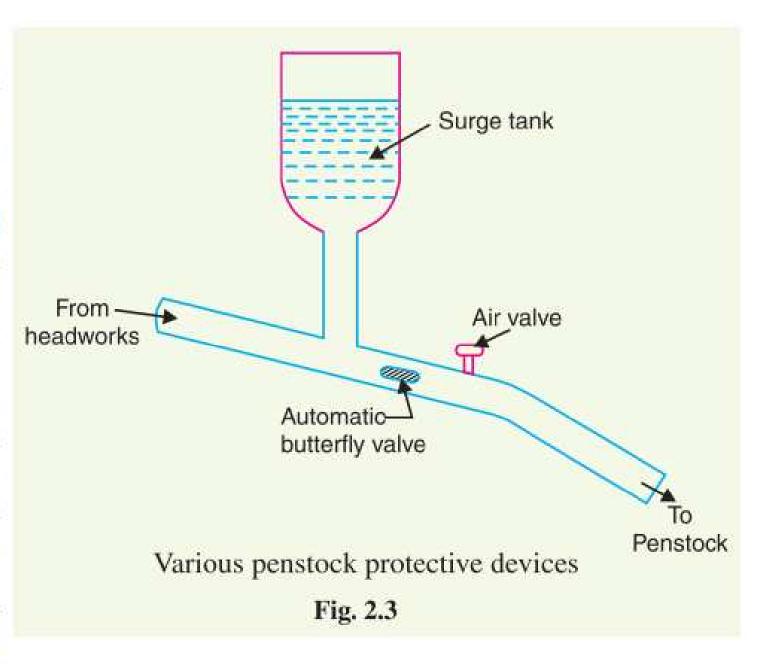
- (*i*) *Availability of water*. Since the primary requirement of a hydro-electric power station is the availability of huge quantity of water, such plants should be built at a place (*e.g.*, river, canal) where adequate water is available at a good head.
- (*ii*) *Storage of water*. There are wide variations in water supply from a river or canal during the year. This makes it necessary to store water by constructing a dam in order to ensure the generation of power throughout the year. The storage helps in equalising the flow of water so that any excess quantity of water at a certain period of the year can be made available during times of very low flow in the river. This leads to the conclusion that site selected for a hydro-electric plant should provide adequate facilities for erecting a dam and storage of water.

Cont....

- (*iii*) Cost and type of land. The land for the construction of the plant should be available at a reasonable price. Further, the bearing capacity of the ground should be adequate to withstand the weight of heavy equipment to be installed.
- (*iv*) *Transportation facilities*. The site selected for a hydro-electric plant should be accessible by rail and road so that necessary equipment and machinery could be easily transported.

It is clear from the above mentioned factors that ideal choice of site for such a plant is near a river in hilly areas where dam can be conveniently built and large reservoirs can be obtained.

The constituents of a hydro-electric plant are (1) hydraulic structures (2) water turbines and (3) electrical equipment. We shall discuss these items in turn.


1. Hydraulic structures. Hydraulic structures in a hydro-electric power station include dam, spillways, headworks, surge tank, penstock and accessory works.

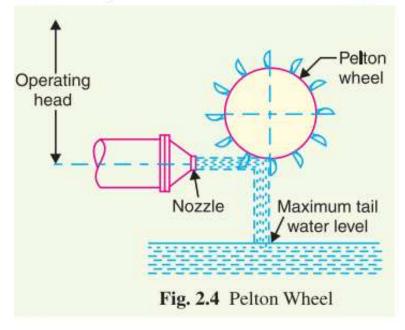
(*i*) *Dam*. A dam is a barrier which stores water and creates water head. Dams are built of concrete or stone masonary, earth or rock fill. The type and arrangement depends upon the

topography of the site. A masonary dam may be built in a narrow canyon. An earth dam may be best suited for a wide valley. The type of dam also depends upon the foundation conditions, local materials and transportation available, occurrence of earthquakes and other hazards. At most of sites, more than one type of dam may be suitable and the one which is most economical is chosen.

(ii) Spillways. There are times when the river flow exceeds the storage capacity of the reservoir. Such a situation arises during heavy rainfall in the catchment area. In order to discharge the surplus water from the storage reservoir into the river on the down-stream side of the dam, spillways are used. Spillways are constructed of concrete piers on the top of the dam. Gates are provided between these piers and surplus water is discharged over the crest of the dam by opening these gates. (*iii*) *Headworks*. The headworks consists of the diversion structures at the head of an intake. They generally include booms and racks for diverting floating debris, sluices for by-passing debris and sediments and valves for controlling the flow of water to the turbine. The flow of water into and through headworks should be as smooth as possible to avoid head loss and cavitation. For this purpose, it is necessary to avoid sharp corners and abrupt contractions or enlargements. (iv) Surge tank. Open conduits leading water to the turbine require no* protection. However, when closed conduits are used, protection becomes necessary to limit the abnormal pressure in the conduit. For this reason, closed conduits are always provided with a surge tank. A surge tank is a small reservoir or tank (open at the top) in which water level rises or falls to reduce the pressure swings in the conduit.

A surge tank is located near the beginning of the conduit.

When the turbine is running at a steady load, there are no surges in the flow of water through the conduit *i.e.*, the quantity of water flowing in the conduit is just sufficient to meet the turbine requirements. However, when the load on the turbine decreases, the governor closes the gates of turbine, reducing water supply to the turbine. The excess water at the lower end of the conduit rushes back to the surge tank and increases its water level. Thus the conduit is prevented from bursting. On the other hand, when load on the turbine increases, additional water is drawn from the surge tank to meet the increased load requirement. Hence, a surge tank overcomes the abnormal pressure in the conduit when load on the turbine falls and acts as a reservoir during increase of load on the turbine.


(v) *Penstocks*. Penstocks are open or closed conduits which carry water to the turbines. They are generally made of reinforced concrete or steel. Concrete penstocks are suitable for low

heads (< 30 m) as greater pressure causes rapid deterioration of concrete. The steel penstocks can be designed for any head; the thickness of the penstock increases with the head or working pressure.

Various devices such as automatic butterfly valve, air valve and surge tank (See Fig. 2.3) are provided for the protection of penstocks. Automatic butterfly valve shuts off water flow through the penstock promptly if it ruptures. Air valve maintains the air pressure inside the penstock equal to outside atmospheric pressure. When water runs out of a penstock faster than it enters, a vacuum is created which may cause the penstock to collapse. Under such situations, air valve opens and admits air in the penstock to maintain inside air pressure equal to the outside air pressure.

2. Water turbines. Water turbines are used to convert the energy of falling water into mechanical energy. The principal types of water turbines are :

(i) Impulse turbines (ii) Reaction turbines

(*ii*) *Reaction turbines*. Reaction turbines are used for low and medium heads. In a reaction turbine, water enters the runner partly with pressure energy and partly with velocity head. The important types of reaction turbines are :

(a) Francis turbines

3. Electrical equipment. The electrical equipment of a hydro-electric power station includes alternators, transformers, circuit breakers and other switching and protective devices.

Precape

- Nuclear power station
- Schematic arrangement of nuclear power station.

